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ABSTRACT

We consider almost complex and almost Hermitian structures and their associated G -
structures. It is proved that the definition of a complex structure on a real linear space is
equivalent to the decomposition of its complexification into a direct sum of two complex
conjugate subspaces that serve as proper subspaces of this complex structure. It is
proved that on every almost complex manifold there exists an almost Hermitian
structure. We prove that specifying an almost Hermitian structure on a smooth manifold
is equivalent to specifying a G -structure on this manifold with the structure group ¢ =
U(n). On the space of the adjoint G -structure, we obtain a complete group of structural
equations and give fundamental identities for approximately Kdhlerian manifolds

G-structure,

Keywords:
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Material And Method: The presentation of the
material is carried out by the systematic use of
Cartan's method of external forms in
combination with the method of invariant
Koschul calculus. Structural equations are
written in a specialized frame, ie on the space of
the associated G -structure.

1. Introduction

The concept of an approximately Kahlerian
manifold is one of the most interesting
generalizations of the concept of a Kahlerian
manifold. It entered the field of geometric
research in the second half of the last century
and quickly attracted the attention of several

leading geometers. This explains the unsettled
terminology: along  with the term
“approximately ( nearly ) Kahlerian manifold”,
used in the works of A. Gray, ]. Wolf, and others,
and currently, the most common, synonyms are
used: “K-space” (S. Tachibana, Y. Watanabe, S.
Koto, and others), as well as “Almost Tachibana
Space” (K. Yano, S. Yamaguchi, M. Matsumoto,
and others). Interest in the concept of an
approximately Kidhler manifold emerged after
Frolicher proved in 1955 the existence of a
canonical almost Hermitian structure on the six-
dimensional sphere $°[1], and Fukami and
[shihara in [2] proved that the fundamental
form of this structure is the Killing form (i.e., i.e.,
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its covariant differential is a differential form),
which is equivalent to the approximate
Kahlerian nature of this structure. As an
independent geometric object, an
approximately Kahlerian manifold appears in
Tachibana's paper [3] under the name of K -
spaces. Further studies of approximately
Kahlerian manifolds are associated with the
names of A. Gray [4], [5], V.F. Kirichenko [6], [7],
[8], Watanabe, and Takamatsu [9], Vanhekke
[10], and many others. And at present, the flow
of geometric studies of approximately Kahlerian
manifolds does not dry out.

The main goalof our work is to obtain a

complete group of structural equations, on the
space of the associated G -structure.
The work is structured as follows. In Section 2,
we define a structure and its almost complex
adjoint G -structure and construct a basis
adapted to an almost complex structure. In
Section 3 we consider the Hermitian structure
and construct a modified A -basis. And in the
constructed basis we write down the operations
of raising and lowering the index for the tensor.
In Section 4 we give definitions of an almost
Hermitian structure and its adjoint G -structure.
In Section 5 we define an approximately
Kahlerian structure and present the first group
of structural equations on the space of the
adjoint G -structure. In Section 6, by a
differential continuation of the first group, we
obtain the complete group of structural
equations. And in Section 7 we define a
structural tensor of the third kind and prove
three fundamental identities for approximately
Kahlerian manifolds.

2. Almost complex structure and its
associated G -structure

Let M be a real differentiable paracompact
manifold of dimension 2n, X (M)be C*(M)the -
module of smooth vector fields on it.

Definition 2.1 ([11))An almost complex
structure on M is a tensor field of Jtype (1,1) that
at each point m € Mdefines an endomorphism of
the tangent space T,,(M)such that J* = —id,
where idis the identity transformation. A
manifold with a fixed almost complex structure is
called an almost complex manifold.

It is known that every almost complex manifold
has an even dimension and is orientable ([11]).
Definition 2.2 ([12])A complexification XX (M)is
a tensor product X‘M)=XM)QC =
> 21 Xy |z € C, X} € X(M)}. Any element of the
complexification can be represented as Y, z; X), =
Y XY, +V=1X.Y, = X ++/—1Y, where X,Y €
X (M).

In X¢(M)a natural way, an involutive
automorphism is  defined: T:X¢(M) -
X ¢(M)called the complex conjugationof vectors
and acting according to the formula: if X =
Yk Zi Xy, then ©(X) = X Z; Xi, where Ziis the
usual operation of complex conjugation.

Let be (M,])an almost complex manifold. We

define in X ¢(M)two operators oand &, acting as

follows:

o == (id —V=1/°),6 = 2 (id + V=1J°),

where J¢is the complexification of the operator

J, namely:

J ke ziXi) = Zie zid Xio).

In the future, allowing freedom of speech, ]Cwe

will simply denote endomorphism J. It is easy to

show that ¢in omutually complementary

projectors, ie, a) 0+ a6 =1id; b) 62 =0. In
1 , V=1,

]oa=5(1+\/—_11d) ZT(ld—

\/—_1]) =+/—10, which means Imo C D]‘/__l.

(Here and in what follows, the symbol

Dfdenotes the proper subspace of the

endomorphism F corresponding to the
eigenvalue ).

Conversely, if X € D}/__l, then oX =
%(X — \/—_1]X) = %(ZX) = X, in particular, X €
Imo. Thus, Imo = D)/__l. Likewise, Imé& =

D7 V=L Since X€(M) = D™ @ D; V™%, we get:

addition

Theorem 2.1.C*(M)-module of smooth vector
fields onM?™ X € (M)decomposes into a direct sum
of eigenspaces of the endomorphism

Jcorresponding to the eigenvalues /—1land
—/—1, ie, X°(M) = D]‘/__1 a5 D]_‘/__l, and the
endomorphisms gand Gare projections onto the
subspaces D]‘/__land D]_‘/__l, respectively.
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Theorem 2.2. Specifying a complex structure on
an R -linear space is X (M)equivalent to splitting
X¢(M)into a direct sum of two complex
conjugate subspaces that serve as proper
subspaces of this complex structure.

Proof. Necessity follows from Theorem 2.1. Let
now X¢(M) =D @ tD. Then VX € X‘(M) =
X =X,+X,, X; €D,X, € tD. We construct an
endomorphism J: X¢(M) — X ¢(M)by setting
JX) =v-1(X, — X,). Obviously, 1(X)=
(X)) +1(X,), and 1(X,) €D, t(X,) €D.
Therefore (Jeo1)(X) = \/—_1(T(X2) - T(Xl)).
On the other hand, due to the antilinearity of the
operator 7 (e NX) =—-1(z(X,) —
T(XZ)) =+/—=1(tX, — 1X;). Thus, JoT =10 J.
So, J = ]Cfor some R -linear endomorphism
J: X (M) -» X(M). Obviously, J? =—id, in
particular, J? = —id, ie. Jis the complex
structure on X (M).If X € D, then X = X;, which
means J(X) = V—1X; = V—1X. Therefore, D
D]‘/__l. Conversely, if X € D]\/__l, then \/—_1(X1 -
X,) = J(X) =V—=1X = V—1(X; + X,), whence
X, = 0, and hence X € D. Therefore, D]‘/__1 c D,

ie. D)1 = D. Likewise, D; V™1 = 7D,

[]
Lemma 2.1. In the introduced notation,
I)teo=aort,
2)Tod=00°T.

Proof. Taking into account the antilinearity of
the mapping tand using the fact that a € -linear
operator F:X¢(M) - X¢(M)is a linear
extension of some R -linear operator f: X (M) —
X (M)if and only if, To F = F o twe have: T o

o(X) = 27(X = V=1X) = (X +V=Tro
JX) =2 (X +V=TJotX) =coT(X); X €

X ¢(M).The second relation is proved similarly.
0

Theorem 2.3. The mappings oly:V — D]‘/__land

aly:V - DY ~Lare, respectively, an isomorphism
and an anti-isomorphism of C -linear spaces.

Proof. The additivity of the mappings o|x)and
0lxanis obvious. Let now z=a + V-1p €
C,X € X(M). As already seen, go] =Joog =
V=10,60] =] o5 = —/—10. Therefore
o0(zX) = o(aX + BJX) = acX + fV—10X =
z(0X). Similarly, 6(zX) = z(6X), and thus the
maps olxgpnand &|xunare, respectively, a
homomorphism and an antihomomorphism of C
-linear spaces.

Let3X € X(M)and gX = 0. Applying the
operator to both parts of this identity 7, taking
into account Lemma 2.1, we obtain that X = 0,
and hence X =0X+6X=0. Therefore,
kero|yan = {0}. Similarly, kerd|y,) = {0},
i.e.,cand gare monomorphism and
antimonomorphism, respectively.

Let, finally X € D]\/__l. Consider the vector
Y =X+ 1X.ThenY € X(M). On the other hand,

since, X € Im o = ker ataking into account
Lemma 2.1, wehave:gY =X + (te0)X =X +
(t° &)X = X. Similarly, if X € D; V%, then 5Y =
X, and, thus, o|yppand &J|xppare an
epimorphism and an anti-epimorphism,
respectively.

N

Let, in particular, V be a finite-dimensional R -
linear space, dimM =2n, and let b=
{eq, ..., e Jbe its basis as a € -module. Consider a
system of vectors b, = {1, ..., & &F) e’ En},
where ¢, =0(e,), g5 =a(ey);a=1,..,n. By
Theorem 2.3, vectors {¢4, ..., &, }form a basis of a

C -linear space D}/__l, and vectors form

{&3, ..., € }a basis of a C -linear space D]_*/__l, and,
by virtue of Lemma 2.1, te, = (to0)e, =
(Go1)e, = ge, = €4. Moreover, because of
Theorem 2.1, the system of vectors b, =
{e1, ..., &n, €1, ..., €4 }forms a basis of the space V¢,
characterized by the fact that the
endomorphism matrix Jin this basis has the

form
o _ (V-1 0
(]j)_< 0 —\/—_11,1)'
(2.1)

Let's call such a basis adapted to the complex
structure, in short A-basis.
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3. Hermitian structures
Definition 3.1. Let V be a real linear space. A
Hermitian structure on V is a pair (J,g = (-)),
where Jis a complex structure on V, g = (-,")is a
(pseudo) Euclidean structure, and
JX,JY)=(X,Y),X,Y €V.

(3.1)

Let be (J,g = (-,))a Hermitian structure on V.
Let us construct a mapping Q:V XV — Rby
setting Q(X,Y) =(X,JY),X,Y € V. Obviously
Y, X) =(Y,JX) = (JY,J?X) = —(JY,X) =
—(X,JY) = —Q(X,Y). Thus, Qis an outer 2-form
on V . It is called the fundamental formof
structure. Obviously, its skew-symmetry is
equivalent to the identity
JX,Y)=—(X,JY); X,Y €V,

(3.2)
which, in turn, is equivalent to (3.1). An obvious
consequence of this identity is the important
relation
(X,]JX)=0; X € V.

(3.3)
Recall that a Hermitian form on a complex linear
space Wis a mapping h: W X W — Csuch that:
Dh(X+Y,2) =h(X,Z)+ h(Y,2);
2)h(X,Y+Z)=h(X,Y) + h(X,2);
3) h(zX,Y) = zh(X,Y); h(X,zY) =zh(X,Y);
Hh(X,Y)=h(,X); X,Y,ZeW,z€eC.
The first two properties are, as usual, called
additivity, the third, sesquilinearity, and the
fourth, hermitian. The notions of non-
degeneracy and positive definiteness of a
Hermitian form are defined in the usual way.
The non-degenerate Hermitian form will often
be called the Hermitian metric, and the C -linear
space in which the Hermitian metric is fixed will
be called the Hermitian space.

Theorem 3.1. Specifying a Hermitian structure
(J,(+Nin a linear spaceV is equivalent to
specifying a non-degenerate Hermitian form h =
((-,M)in V, considered as a C - linear with respect
to Jspace. The positive definiteness of a form is
((-,"))equivalent to the positive definiteness of a
bilinear form (-,").

Proof. Let be (J, (-,))a Hermitian structure on V
Let ((X,Y)) =(X,Y)+V=1(X,JY); X,Y € V.
Taking into account (4.1) and (4.2), it is obvious

that (X, V) = (X, V) +V=-1(X,Y) =
V=X, Y) —(X,JY) = V=-1((X, ) +
V=1(X,]Y)) = V=T({X, V)). Similarly,
((X,]JY)) = —V—=1((X,Y)), whence, taking into
account the definition of a € -module in V, it
follows that the form ((-,-))is linear in the first
and antilinear in the second argument. In
addition, (Y, X)) = (Y, X) +V=-1Q(Y,X) =
(X,Y) —V=1Q(X,Y) = ({X,Y)). Thus, ({-"))is a
Hermitian form on V. Obviously, it is non-
degenerate.

Conversely, let h be a non-degenerate
Hermitian form in V . Consider the bilinear
forms g =Rhand Q= Jh- the real and
imaginary parts of the form h, respectively.
Thus, h(X,Y) =gX,Y)+V-1Q(X,Y);X,Y €
V. Since gX,Y)++V/-10(X,Y) =h(X,Y) =
(Y, X) = g(Y,X) —V/-1Q(Y, X), then,
comparing the real and imaginary parts, we
have:

1) g(X,V) = g(¥,X); 2) QX,Y) = —Q(Y,X).
(4.4)
Next, V—1g(X,Y) —Q(X,Y) =vV=1h(X,Y) =
—h(X,JY) = —g(X,JY) —V=1Q(X,]Y).
Comparing the real and imaginary parts, we get
that
1) QX,Y) = g(X,JY); 2) g(X,Y) = —QX,JY).
In particular,
gUX,JY) = Q(UXx,Y) = —Q,JX) = g(X,Y).
Wherein
h(X,Y) = g(X,Y) +V-1g(X,]Y) = ((X,Y)).
Taking into account the last relation, it is
obvious that the bilinear form is non-
gdegenerate, and the positive definiteness of
the form 1is gequivalent to the positive
definiteness of the form h. Thus, (J,g)is a
Hermitian structure, and Qis its fundamental
form. O

Remark 3.1. In what follows, unless otherwise
stated, we will always assume that g = (+,)is a
Euclidean structure, which means that the form is
((-,"))positive definite.

Let be (J,g = (-,-))a Hermitian structure on a
linear space V. Then the V¢ = € ® VC -bilinear
form is naturally defined in space

9k 2 X, Zm Wi Yim) = Ziem ZeWie{ X, Y,
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or, alternatively,

gs (X +V-1Y,Z +V=1W) = (X, Z) -

(Y, W) +V=1((X, W) + (Y, Z)).

Obviously, this form is non-degenerate (which is
easier to see from its alternative definition). It is
called the linearity extension of theform g.
Allowing the liberty of speech, we will further
designate it in the same way as the form itself g.

Theorem 3.2. The proper subspaces of the
endomorphism Jare completely isotropic with
respect to the form g.

Proof. Let )?,YED]‘/__l. Since the mappings
aly:V - D]‘/__land aly: V- D]_‘/__lare,
respectively, an isomorphism and an
antiisomorphism of € -linear spaces, X =

oX,Y = oYforsome X,Y € V. So
(X,Y) = (06X, oY)

= %((x —V=1X,Y —V=1J1))

= %((x, Y) = (JX,JY) +V=1(X,JY)

+V=1(X,7))
= 0.
Quite similarly, (X,¥) = 0; X,V € D]‘/__l.

[]

The form gnaturally introduces the Hermitian
form

HX,Y) =2(X,1Y); X,Y € V€
in space V¢. From the non-degeneracy of the
form g(and of the operator 7) it follows that the
form H is non-degenerate. Further, it is fair

Proposition 3.1. The proper subspaces of the
endomorphism Jare orthogonal with respect to
the Hermitian metric H.

Proof. This immediately follows from Theorem
3.1 and the definition of the metric H, because if

X e D]‘/__l, Y e D]_\/__l, then
H()?, )7) = 2(X, 1Y) = 2(0X,15Y) =
2(aX,aY)=0; X,Y EV.

U]

Since the linear spaceV¢decomposes into a

direct sum of eigenspaces of the endomorphism
Jcorresponding to the eigenvalues +—1and
—=1, ie, V€= D]‘/__1 D D]_‘/__l, and the
endomorphisms oand gare projections onto the
subspaces D]‘/__land D]_‘/__l, respectively, we
obtain:

Theorem 3.3. The linear space V¢decomposes
into an orthogonal direct sum of the eigenspaces
of the endomorphism Jcorresponding to the

eigenvalues \—land —V-1, ie,V¢ = D}/__l D
p—T
] .

Theorem 3.4. Themappings a:V—)D]‘/__land

gV - D]_‘/__lare, respectively, an isometry and
an anti-isometry of C -linear spaces with respect

to the Hermitian metrics {{:,-))on V and H on
Di\/—_l
] ]

Proof.Let X,Y € V. Then
H(oX,0Y) = %H(X —V=1JX,Y
—V=1JY)
= %(x —V=1JX,Y +V=1J7)

- %((X, YY)+ (JX,JY) +V=1(X,]Y)

—V=1(JX,Y))
= ((X,Y) +V-1(X,JY))
= ((X,Y)).
It is proved similarly that H(6X,aY) = ((X,Y)).

(]

Theorems 3.1, 3.3, and 3.4 immediately imply
Proposition 3.2.4 Hermitian metric H is positive
definite if and only if gis a Euclidean structure.

Proof. By virtue of Theorem 3.3, it suffices to
prove the assertion for the restrictions of the
metric H to proper subspaces of the
endomorphism J. But for them, it is true by
virtue of Theorems 3.4 and 3.1.

[]
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Let, in particular, V be a finite-dimensional R -
linear space, dimM =2n, and let b=
{eq, ..., en}be its basis as a € -module. Applying,
if necessary, the Gram-Schmidt
orthogonalization procedure, we can assume
without loss of generality that b = {ey, ..., e, }isa
basis orthonormal with respect to the Hermitian
metric ((-,")). Note the following useful

Proposition 3.3.The RA -basis corresponding to
the orthonormal basis b ={eq,..,e,}, Iis
orthonormal with respect to the metric g.

Proof.Due to the orthonormality of the basis
b = {ey, ..., e, with respect to ({-,")), (e, ep)) =
(eqg.ep) +V—1(ey, Jep) = 8,5. From  here
<ea: eb) = 6ab; (ea!]eb) = 0; (/ealjeb> =
(eq, €p) = Oap; {Jeq ep) = —(eq,Jep) = 0.

[]

Consider a system of vectors by =
{€1, ) €y €1, ., €5}, Where g, = V20(e,), €5 =
ﬁ&(ea); a=1,..,nBy Theorem 3.4, the
vectors {&, ..., &, }form orthogonal with respect
to the Hermitian metric Hthe basis of the space

D]‘/__l, and the vectors are the basis of the space

{e1, ..., €q Jorthogonal with respect to the same
metric D]_\/__l, and, as in the case of almost
complex structures, te, = €;. Moreover, by
Theorem 3.3, the system of vectors b,forms a
Hermitian space basis orthogonal with respect
to the same metric (V¢ H)(the norm of basis
vectors in such a metric is obviously v2). Let's
call a basis of this kind modified A-basis. The
modified A -basis differs from the usual 4 -basis
attached to an almost complex structure J,
firstly, by the obligatory orthogonality, and
secondly, by the presence of a factor v2in the
definition of its elements. However, taking the
liberty of speech, by A -bases of a Hermitian
space we will always understand modified A -
bases.

Proposition 3.4.The modified A -basis of the
Hermitian space is characterized by the fact that
the matrices of the components of the tensors
Jand ghave the form in it, respectively:

D (f) = <\/__01]n _\/2—11 >; 2) (94) =

(21 1{;). (3.5)

Proof.The first of these relations is defined by
Theorem 3.3, the system of vectors b, =
{e1, ..., €, €7, ..., €5 }forms a basis of the space V¢,
characterized by the fact that the
endomorphism matrix Jin this basis has the
form (3.5:1). As for the second relation, then,
taking into account Theorem 3.2, gg =
(ew, €p) =0; gap = (€a,€5) = 0. Moreover,
taking into account Theorem 3.4, g,5 = gap =
(€ar€5) = (£, TEp) = S H(eq,8) =

H(aea,aeb) = ((eal eb)) = 6(119 N
Remark 3.2. Taking into account the formula
(3.5:2), the operation of lowering the index X' —
X; = gl-ijin the modified A -basis will be written
as follows: X, = gapX? + go5X° = X% X5 =
9arX? + ga5XP = X%and, thus,

X, =X% X; = X%

Similarly for tensors of arbitrary type.

Now let b= {ey,..,e,}and b = {é,,...,&,}be
two orthonormal bases of the space V, C =
C,; = (cf)be the transition matrix from basis
bto basis b. Obviously, C € U(n), and the

formula
Coab, = (g g),C € U(n),

(3.6)
defines an embedding of Lie groups U(n) c
GL(2n, C)and hence a right action of a Lie group
U(n)on the set of orthonormal bases of a given
Hermitian structure.

4. Almost Hermitian structure and its
associated G -structure

Definition 4.1. Almost Hermitian (in short, AH -
) structure onan n-dimensional manifoldM?*"is
called a pair (J, g), where Jis an almost complex
structure on M, g = (-,)is a Riemannian metric
on M. Wherein

UX,JY) =X, Yy, X,Y € X (M),

where X (M)is C®(M)the modulus of smooth
vector fields on M?". An endomorphism Jis called
a structural endomorphism. A manifold on which
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an almost Hermitian structure is fixed is called an
almost Hermitian (in short, AH -) manifold.

Proposition 4.1. Every almost complex manifold
has an almost Hermitian structure.

Proof. Let be gan arbitrary Riemannian metric
on an almost complex manifold (M,]). Let's
build a bilinear form g(X,Y)=gX,Y)+
gJxX,JY); X,Y € X(M). Obviously, the form is
gpositive definite and hence is a Riemannian
structure. It is also obvious that g(JX,JY) =
g(X,Y), which means that the pair (J, g)is an
almost Hermitian structure on M?™,
0

Obviously, an almost Hermitian structure can be
considered as a Hermitian structure of a module
X (M)considered as an R -linear space. Setting
an almost Hermitian structure is
(J, g)equivalent to setting a Hermitian structure
(X, 7)) =(X,Y)++V=1(X,JY)in this space,
considered as a € -module with respect to the
complex structure J.

Let be (J, g)an almost Hermitian structure on
the manifold M. It induces almost Hermitian
structures (/,,, gm)at every pointm € M.

Theorem 4.1. Specifying an almost Hermitian
structure on a smooth manifold M*"is equivalent
to specifying a G -structure on this manifold with
the structure group G = U(n).

Proof. Let be Jan almost Hermitian structure on
M. Then, at each point m € M, a family of
Rorthonormal frames of the space is defined
T,,(M), which is considered as an n-dimensional
C -linear space. It follows from the definition of
a frame that a group U(n)acts in each such
family freely and transitively.

[

Lemma 4.1. In some neighborhood U of an
arbitrary point m € M, one can construct a
family of vector fields {e?, ...,e}on U that form
an orthonormal basis of a module X (U)as a C Q
C*(U)-module.

Proof. We fix m € Msome basis at a point p =
(&1, o, & Jméis oo Jmén}. The system of vectors
&xcan be extended to a system of vector fields
ep(k =1,..,n)on M. In this case, the system of
vectors J[,,&,will continue to the system of
vector fields Jep. Since the linear independence
of the vectors of the frame pis equivalent to the
inequality zero of the determinant of the
transition matrix from the natural basis at the
point mto the basic part of the frame p, this
property is preserved in some neighborhood U
of the point mfor vector fields as well
{ef,...,ed,Jed, ..., Jel}. But then, obviously, the
system {e?, ..., ed}of vector fields on U will be
C ® C”(U)-linearly independent, and hence
forms a basis of the € ® C*(U)-module X (U).
Applying the Gram-Schmidt orthogonalization
procedure to this basis, we obtain the desired
orthonormal basis. 0

Let's continue the proof of Theorem 4.1. The
basis of the view {ey, ..., ey, Jey, ..., Jep }is called
the RA -basis. Let us denote BM = Upey Ry,
and introduce the natural projection m:R —
Mthat assigns the vertex to the frame p € R.
Now we can construct the mapping
Fy:m~Y(U) - GL(n,C)by setting Fy(p) =g,
where gis the transition matrix from the frame
(m, e, ..., e2],)to the frame p. Further, it is
easy to verify that the quadruple B;(M) =
(R,M,7,G = GL(n,C))forms  a  principal
bundle. This principal bundle can be considered
as a G - structure with respect to the
monomorphism (f, p)of the principal bundle
B;(M)into the principal bundle B(M), where
f:R — BMis the map that associates the
(m, eq, ..., ep)space frame T,,(M)as a C - module
with the corresponding RA -frame, and
p:GL(n,C) —» GL(2n,R)is the canonical Lie
group monomorphism that associates the
matrix with € =A++V—1B € GL(n, C)the

matrix p(C) = (g _AB)whose image is the Lie

group GLE (n, C).

Conversely, let be (R, M,m, GLR (n, C))a G
-structure of this type on M. Let be Jya standard
complex structure in space R?"given by a matrix

. 1
of the form (J}) = (10 0n>' Let be m € Man
n
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arbitrary point. We define an endomorphism
Jmin space by the T,,(M)formula J,, =poj,e°
p~1;p € m~1(m). Obviously, J3 = —id, i.e. J,is
the complex structure on T,,(M). Let us show
that it is well defined in the sense of being
independent of the choice of the element p €
m~1(m). Indeed, if p € T~ (m)is another such
element, then 3h € GLR(n,C)and P = ph.
Therefore, pojoop™ = (ph)ojoo(ph)™" =
pe(hoJooh™)op™t=pojyop™t = Jysince
the group GLR®(n,C)is obviously an
endomorphism invariance group J,, i.e., hj, =
Joh; h € GLR(n, €), which is checked directly.
Let us show that the family of tensors | =
{J;nIm € M}defines a smooth tensor field on the
manifold M . To do this, it suffices to prove that
any admissible map (U,¢@)on M of functions

m—>]]i-(m)=dxi (]m (% )),mEM, are

smooth on U . Let us fix a local section s:U —
Rof the space of the G -structure. Then, by
construction, in the RA -frame o(m)(and dual-
coreframe) we have:

. 0 —I .

(el (]m(ef))) - (In on) = (0o%,)

The smoothness of the section is expressed in
the fact that the components of the matrix C of
the transition from the natural basis of the
module X (U)to the RA -basis o(U)of this
module, and hence the components of the
inverse matrix €, are smooth functions.

5]

Therefore, m - J;(m) = dx’ (]m (— )) =

axily,
CL(m)e* (Jm(C] (me,)) =
CLMC] (m)e*(Jmer)) =
Cr(m)CT (m)(Jo)fare smooth functions on U .
Thus, Jis an almost complex structure.
Obviously, the family of RA -frames generated

by it coincides with the space of the G -structure.
|

Definition 4.2. TheG - structure B M constructed
above is called the G -structure attached to an
almost Hermitian structure (J, g).

5. Approximately Kahlerian structures
Definition 5.1. An almost Hermitian structure
on a manifold M is called an approximately

(nearly) Kahlerian (in short, N'X-) structure if
the identity
V(DY +Vy(NDX =0; X, Y € X (M).

(5.1)

Theorem 5.1. An almost Hermitian structure
(J, g)on a manifold M is approximately Kahlerian
if and only if the identities hold on M
DBX,Y)=0; 2)CX,Y)+C(Y,X) =0.

(4.2)

Proof. First of all, we note that for
approximately Kahlerian manifolds we have the
identities
V]X(/)Y =Vx(NJY = =] o Vx(J)Y.
(5.3)

Indeed, in view of the identity JoVyx(J)Y +
Vx(J)JY =0, which is valid for any almost
Hermitian manifold,
V]XU)Y ==-Vy(NUX) =] Vy(DX=—] o
V()Y =V (DUY).
From this, it immediately follows that
B(X,Y) = {V;x(DY = Vx(DUY)} = 0;
CX,Y) =5 {Vix (DY + Vx (DU} = —J o
V(DY =] o Vy(DX = =C(Y, X).
Conversely, if these relations hold, then
Vx(NY =] CX,Y) =] C(Y,X) =
Vy(DX; X, Y € X (M).
Therefore, M is an approximately Kahlerian
manifold.

l

Since an almost Hermitian structure is quasi-
Kahlerian if and only if its virtual tensor is equal
to zero, we obtain

Corollary 5.1. Any approximately Kdhlerian
manifold is a quasi-Kdhlerian manifold.

Almost Hermitian structure (J,g)on the
manifold M is approximately Kahlerian if and
only if therelations
1) Babc =0; 2) Babc — B[abc];

(5.4)
and complex conjugate formulas (in short, f.c.s.).
By virtue of these relations, the first group of
structural equations of the NK - structure has
the form:
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D do® = -0 ANw® +
B*Cw, A w,;
2) dwg = 0L A wy, + Bapew? A 0.
(5.5)

6. Complete group of structural equations
The second group of structural equations can be
found using the procedure of differential
continuation of relations (5.5). To do this, we
differentiate (5.5:1) externally:
—dO2 A w? + 0f AdwP + dB*™C A wy A w, +
B*<dw, A w, — B*“w, A dw, = 0.
We substitute the values from (4.5) into the
resulting equality, then we get:
—dOf A wP + 0F A (=02 A w€ + BPCw, A
wq) + dB™° A wy A w, + BP0 AN wy +
Bpan@® A w") A w. — B%Cw, A (¢ Awy +
B.gnw® A w™) = 0.
We rewrite the resulting equality in the form:
—AG¢ A wP + ABYC A wpy A w, = 0,

(6.1)
where
1) A2 = dOF + 02 A 65 + 2B By, . w¢ A wy;
2) AB@bc — dBabc + Bdbceél + Badce(li) +
Bebage, (6.2)
Restricting, as usual, to the area U € Mof some
map on M, and setting W = n~1(U), we expand
the restriction of these forms in standard bases
of modules A,(W)and Al(W) respectively:
1) AGE = ASL10F A 62 + Abcdef A +

AaCdHwad + A% g€ A0 + AP 0 A wg +
Aadec Awg;

(6.3)
2) ABabC — BabC(]iCHCI; + Babcd(l)d + Bade(A)d.

Substituting these relations into (6.1), we obtain

afh
—ApL16F A6 AP — AT

AaCdHwad/\w hea)@® A w?® A wP
Af‘bdc]wc Awg AwP? — A% w. A wy A w? +
Bab“}q{ Awy A ws + B 0% A wp A w, +
Balbedlyy , A wyy A w, = 0.

Bf A w? A wP

Hence, taking into account the linear
independence of the basic forms, we obtain that

h
1) AY" = o; 2)Ablcld 0; 3) A =
0; 4) Afyeq) = 0; S)A e = 0; 6) A% +

Babcd =0; 7) Babc‘} =0; 8) palbed] — .
(6.4)

Similarly, we differentiate (4.5:2) externally:

dOl A wp — 02 Adwy, + dBgpe A 0P A 0 +

Bapcdw? A w€ — Bgpew? Adw® = 0.

We substitute the values from (4.5) into the

resulting equality, then we get:

dO2 A wp — 02 A (BE A we + Bpeqw® A w®) +

dBgape N 0P A € + Bape(—05 A w® + BPMawy A

Wp) A @€ = Bapew? A (=85 A w? + Bhw, A

wp) = 0.

We rewrite the resulting equality in the form:

ABE A wy, + ABg,e A 0P A w€ =0,

(6.5)
where
ABgpe = dBgpc A w? — Bdbceg - Badcelgl -
Bapa08. (6.6)
Let there be equality
ABgpe = abcd ef + Babcdw + Babc Wg.

(6.7)
Substituting these ratios and ratios (6.3:1) into
(6 5) we get
Aacdef Aot Awy + AL 0¢ A wt Awy, +
Ag’cd]w Awg Awy + ALY, A wd Awp +
Babcd Hf AwP? Aw¢ + B [bcd]w AwP Aw€ +

Babc Wq N (1) A (l) = 0.
Hence, taking into account the linear
independence of the basic forms, we obtain that

1) A, =0; 2) Abey + Bap® = 0; 3) ALY
=0; 9 ALY =o; 5B, J
= 0;
6) Ba[bcd] = 0.

(6.8)
Taking into account the obtained equalities
(6.4) and (6.8), expansions (6.3) and (6.7) take
the form:

1) dOf = —02 A 65 + Aacd(u Aw? + (A% —

2BYB,, V€ A wg + A0, A wg; (6.9)
2) dBabc + Bdbcga Badceb Babdeg —
Babcdwd +Babcdw

3) dBgpe N P — BapcOf — BaacOff — Bapad =

Babcdwd + Babcdwd-
From equalities (6.4) and (6.8) we obtain:
gcd = AIUJLCd = Babcd = Babcd = 0.
Thus, relations (6.9) take the form:
1) dog = =62 A O + (AZ2 — 2B49h By, Jw® A
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2) dBP¢ + B4€g3 + B0 + BG4 =
Babcdwd;

3) dBape — Bapc83 — BaacOs — BapabS =
Babcdwdr

where

Aflbd — Agld] — O,Ba[de]

c] c

= Ba[bcd] = 0.
(6.11)

Remark 6.1. The components of the form of
{the first canonical connection of Van arbitrary
almost Hermitian structure on the space of the
adjoint G -structure has the form:

1) 88 = 05 + Biw; 2)3f =0; 3)¢f =

—62 + Bb.w®; 4) ¢ =o. (6.12)

In particular, in the case of approximately
Kahlerian structures

((j) 3 (05‘ 0 >
J 0 6=-62)
(6.13)
From these relations it follows that
FVV&BabC = B4, FVVdBabc = Bapcas
(6.14)

(here and below V,t/'"/s=t/tF
corresponding components of the covariant
differential of the tensor t in the first canonical
connection). The remaining components of the
tensor W(Alt C)on the space of the attached G -
structure are equal to zero. It follows from what
has been said that the functions B%“%and
Bapcqare defined globally on the space of the
associated G  -structure. Moreover, the
differential continuation of relations (6.10)
(taking into account the second fundamental
identity) leads to the relations
1) dBade +Bhb6d0}? +
Bahcde}l{ + Babhdeﬁ + Babcheicli —
Babcdhwh;
2) dBapca — Bhbcdecrll -

Bahcdel’)l ~ Bapra — Babcheg = Bapcan®"
where {B*¢dh B, ..}is a globally defined
system of functions on the space of the adjoint G
-structure that serve as components of the
second covariant differential of the tensor
Alt Cin the first canonical connection. The
nonzero components of the ® =D{=d{+

are the

;[( ,{Jcurvature form of the connection Vhave

the form ®f = (A% — 2B*"B,, )w° A wzand
f.c.s.

In particular, since the functions B%€and
B,pc0n the space of the adjoint G -structure are
defined globally, the functions are A%Zalso
defined globally.Thus. Proven

Theorem 6.1. The complete group of structural
equations of an approximately Kahlerian
structure has the form:
1) dw® =—-6F A
w? + B®w, A w,;
2) dw, = 02 A
wp, + Bapew? A 0F;
3)dof = —6& A
05 + (A5¢ -
2B4hB,, YW A wg;
4) dB%° +
B¥€0g + B G +
Babdgé — Babcdwd’.
5) dBgpe A w? —
Bdbcec(li _Badcelgl -
Bapab& = Bapcaw?,
where {Agg}is a globally defined system of
functions on the space of the adjoint G -structure,
which is symmetric in superscripts and subscripts.

Remark 6.2. Taking into account that w® =
wge; 6% = —6b; Babc =By, ., and performing
complex conjugation of the relation (6.10:1),
taking into account the linear independence of
the basic forms of the module A,(M), we obtain
that

AT = A%,

(6.17)

7. Fundamental identities of approximately
Kahlerian manifolds

Let's differentiate relations (6.10:1) externally:
—dOZ A O + 608 AdOf + d(AE —

2B4hB, YA W€ Awy + (AZE —

2B4hB,, Vdw’ A wy — (AF4 —

2B4B,, Jw® Adwy = 0.

We substitute the values from (5.5) and (6.10)
into the resulting equality, then we get: —{93 A
0% + (A% — 2BYUIB . )w A wp} AOE + 6F A
{05 N OF + (A5 — 2BMIB 0 ) w® A wy }dOS +
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dAbC AW Awyg — 2BppdB* M A 0 Awg +
(Ag2 — 2B By ) (=05 A w9 + B9 wy A

wp) Awg — (A3% — 2BY" By, Yw A (0 A wy +
Bagrw9 A a)f) = 0.

We open the brackets and make a ghost of
similar terms, then we get

(dASE + ABZO% + ASCOR — ARZO) — ASR6E) A
WENANwg — (AZ{C — ZBanggb[C)B|f|dh]a)C Aw® A
w" 4+ 2BMIB a0 A 0 A wp, —

ZBa[dLg'h]B W ANwg N wy + (Aa[d

ZBa[””hBth) B9y A wy A wy = 0.

(7.1)
We expand the restriction of forms AA% =
dA?? + ARQ2 + AShgl — AZdQl — AFIOM0 W
in the standard modulus basis A; (M):
AASY = dA3Y + AlYP2 + Adhgd — A%4p] —
A¢ eh Agggeg +Abchwh + AY" . (7.2)
We substitute this relation in (7.1), then we get:
ABER0Y A A wg + ARl 0™ A w Awg +
Aggdh]wh AwCAwg — (AZ{C —
ZBanggb[c)B|f|dh]wC Aw® Ao +
2Bathgb[Cd]a)C Awd A wp —
2BU9INB w0 A wg Ay + (455 —

2Bl By, ) B9 wy A wy A wy = 0.

And, taking into account the
independence of the basic forms, we get:

1) Ajeg = 0; 2)( Apfe = 2B 9By )Blfldh] =

linear

0; 3) (45l ZBa[dlhB ¢) BY9Y; 4y Agt
2BUIB 1y 5) AL = ppaldiginlp |

(7.3)
Performing complex conjugation of the equality
dA3d + AMd92 + Adhgd — A%4pl — A%lQh =

Abchw +A%§hwh, taking into account w@ =
wq; O = —62; Babc = B, both (6.17) and the
linear independence of the basic forms, we

obtain that

“qadh _
A Aadh

(7.4)
By the Main Theorem of tensor analysis and
relation (6.13), the identity
dA3d + AMd92 + Adhgd — A%4pl — A%dgh =
Abchwh + Agghwh, (7.5)

shows that the system of functions {A,‘j?}on the
space of the associated G -structure is a system
of components of some four-valent tensor A on
the manifold M . Relation (6.17) shows that this
is a real tensor. It is called the structural tensor
of the third kind or the holomorphic sectional(in
short, HS -) curvature tensor of an approximate
Kahler manifold.
Wherein
Vnd§e = A5 VRAR:
(7.6)
Due to the oblique symmetry of the system of
functions {B%"Bp,r}with respect to the
indices b and d and the symmetry with respect
to the indices d and f, we obtain from this that
the space of the associated G - structure
B"Bypas = 0; Byep B = Bachp, - =
BaChBhbdf = O (77)
This identity is called the first fundamental
identity.
Identity
(Ag?c - 2Bathhb[c)Bgf]d =0,
(7.8)

is called the second fundamental identity.
Let's collapse (7.8) by indices aand b :
A2Bgrq + AlBreq + AFBega — 2BEByrq —
2B{Bcq — 2B]£1Bcgd =0, (7.9)
where A¢ = AR, B = BI"B ;.. Now we fold
(7.8) with respect to the indices a and ¢ and
rename bto c. Taking into account the symmetry
properties of objects A and B, we get:
A%Byrq + 2BIBysq — 2BJBfca + 2Bf Bogq = 0.

(7.10)
Subtracting (7.10) term by term from (7.9),
taking into account the symmetry properties of
the object B, we obtain the identity
Af Brica — 2B&Bgsq = 0.

(7.11).

The  identity  A{,Bfjca — 2B¢Bysq = Ois
calledthe third fundamental identity.

Aadh

Conclusion

So, the complete group of structural equations
of an approximately Kdhlerian manifold on the
space of the associated G - structure has the
form:

1) do® = —60% AwP + B w, A wg;

2) dwg = 02 A wy, + By w? A 0f;
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3) dog = —03 A 65 + (A — 2B By, wC A
Wy;

4) d Babc _l_BdbcHg +BadC93 +Babdgocl —
Babcdwd.

5) dBabc A wb - Bdbceg - Badceg -
Bapab& = Bapcaw®.

The fundamental identities of an approximately

Kdhlerian manifold on the space of the

associated G - structure have the form:

1) B Bppas = 0; Bacn B"Y = 0;

2) (Ag?c — 2B Byp(c)Bggia = 0;

3) A([ing]Cd - ZBCngfd - O
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