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Material And Method: The presentation of the 
material is carried out by the systematic use of 
Cartan's method of external forms in 
combination with the method of invariant 
Koschul calculus. Structural equations are 
written in a specialized frame, ie on the space of 
the associated G -structure. 
 
1. Introduction 
The concept of an approximately Kählerian 
manifold is one of the most interesting 
generalizations of the concept of a Kählerian 
manifold. It entered the field of geometric 
research in the second half of the last century 
and quickly attracted the attention of several 

leading geometers. This explains the unsettled 
terminology: along with the term 
“approximately ( nearly ) Kählerian manifold”, 
used in the works of A. Gray, J. Wolf, and others, 
and currently, the most common, synonyms are 
used: “K-space” (S. Tachibana, Y. Watanabe, S. 
Koto, and others), as well as “Almost Tachibana 
Space” (K. Yano, S. Yamaguchi, M. Matsumoto, 
and others). Interest in the concept of an 
approximately Kähler manifold emerged after 
Frölicher proved in 1955 the existence of a 
canonical almost Hermitian structure on the six-
dimensional sphere 𝑆6[1], and Fukami and 
Ishihara in [2] proved that the fundamental 
form of this structure is the Killing form (i.e., i.e., 
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its covariant differential is a differential form), 
which is equivalent to the approximate 
Kählerian nature of this structure. As an 
independent geometric object, an 
approximately Kählerian manifold appears in 
Tachibana's paper [3] under the name of K - 
spaces. Further studies of approximately 
Kahlerian manifolds are associated with the 
names of A. Gray [4], [5], V.F. Kirichenko [6], [7], 
[8], Watanabe, and Takamatsu [9], Vanhekke 
[10], and many others. And at present, the flow 
of geometric studies of approximately Kahlerian 
manifolds does not dry out. 

The main goalof our work is to obtain a 
complete group of structural equations, on the 
space of the associated G -structure. 
The work is structured as follows. In Section 2, 
we define a structure and its almost complex 
adjoint G -structure and construct a basis 
adapted to an almost complex structure. In 
Section 3 we consider the Hermitian structure 
and construct a modified A -basis. And in the 
constructed basis we write down the operations 
of raising and lowering the index for the tensor. 
In Section 4 we give definitions of an almost 
Hermitian structure and its adjoint G -structure. 
In Section 5 we define an approximately 
Kählerian structure and present the first group 
of structural equations on the space of the 
adjoint G -structure. In Section 6, by a 
differential continuation of the first group, we 
obtain the complete group of structural 
equations. And in Section 7 we define a 
structural tensor of the third kind and prove 
three fundamental identities for approximately 
Kählerian manifolds. 

 
2. Almost complex structure and its 
associated G -structure 
Let M be a real differentiable paracompact 
manifold of dimension 2𝑛, 𝒳(𝑀)be 𝐶∞(𝑀)the -
module of smooth vector fields on it. 
Definition 2.1 ([11])An almost complex 
structure on M is a tensor field of 𝐽type (1,1) that 
at each point 𝑚 ∈ 𝑀defines an endomorphism of 
the tangent space 𝑇𝑚(𝑀)such that 𝐽2 = −𝑖𝑑, 
where 𝑖𝑑is the identity transformation. A 
manifold with a fixed almost complex structure is 
called an almost complex manifold. 

It is known that every almost complex manifold 
has an even dimension and is orientable ([11]). 
Definition 2.2 ([12])A complexification 𝒳(𝑀)is 
a tensor product 𝒳𝑪(𝑀) = 𝒳(𝑀) ⊗ 𝑪 =
{∑ 𝑧𝑘𝑋𝑘 |𝑧𝑘 ∈ 𝑪, 𝑋𝑘 ∈ 𝒳(𝑀)}. Any element of the 
complexification can be represented as ∑ 𝑧𝑘𝑋𝑘 =

∑ 𝑋𝑘𝑌𝑘 + √−1 𝑋𝑘𝑌𝑘 = 𝑋 + √−1𝑌, where 𝑋, 𝑌 ∈
𝒳(𝑀). 
 
In 𝒳𝑪(𝑀)a natural way, an involutive 
automorphism is defined: 𝜏: 𝒳𝑪(𝑀) →
𝒳𝑪(𝑀)called the complex conjugationof vectors 
and acting according to the formula: if 𝑋 =
∑ 𝑧𝑘𝑋𝑘𝑘 , then 𝜏(𝑋) = ∑ 𝑧𝑘̅𝑋𝑘𝑘 , where 𝑧𝑘̅is the 
usual operation of complex conjugation. 
 
Let be (𝑀, 𝐽)an almost complex manifold. We 
define in 𝒳𝑪(𝑀)two operators 𝜎and 𝜎, acting as 
follows: 

𝜎 =
1

2
(𝑖𝑑 − √−1𝐽𝑪), 𝜎 =

1

2
(𝑖𝑑 + √−1𝐽𝑪), 

where 𝐽𝑪is the complexification of the operator 
𝐽, namely: 
𝐽𝑪(∑ 𝑧𝑘𝑋𝑘𝑘 ) = ∑ 𝑧𝑘𝐽(𝑋𝑘)𝑘 . 
In the future, allowing freedom of speech, 𝐽𝑪we 
will simply denote endomorphism 𝐽. It is easy to 
show that 𝜎in 𝜎mutually complementary 
projectors, i.e., a) 𝜎 + 𝜎 = 𝑖𝑑; b) 𝜎2 = 𝜎. In 

addition 𝐽 ∘ 𝜎 =
1

2
(𝐽 + √−1𝑖𝑑) =

√−1

2
(𝑖𝑑 −

√−1𝐽) = √−1𝜎, which means 𝐼𝑚 𝜎 ⊂ 𝐷𝐽
√−1. 

(Here and in what follows, the symbol 

𝐷𝐹
𝜆denotes the proper subspace of the 

endomorphism F corresponding to the 
eigenvalue ). 

Conversely, if 𝑋 ∈ 𝐷𝐽
√−1, then 𝜎𝑋 =

1

2
(𝑋 − √−1𝐽𝑋) =

1

2
(2𝑋) = 𝑋, in particular, 𝑋 ∈

𝐼𝑚 𝜎. Thus, 𝐼𝑚 𝜎 = 𝐷𝐽
√−1. Likewise, 𝐼𝑚 𝜎 =

𝐷𝐽
−√−1. Since 𝒳𝑪(𝑀) = 𝐷𝐽

√−1 ⊕ 𝐷𝐽
−√−1, we get: 

 
Theorem 2.1.𝐶∞(𝑀)-module of smooth vector 
fields on𝑀2𝑛𝒳𝑪(𝑀)decomposes into a direct sum 
of eigenspaces of the endomorphism 

𝐽corresponding to the eigenvalues √−1and 

−√−1, i.e., 𝒳𝑪(𝑀) = 𝐷𝐽
√−1 ⊕ 𝐷𝐽

−√−1, and the 

endomorphisms 𝜎and 𝜎are projections onto the 

subspaces 𝐷𝐽
√−1and 𝐷𝐽

−√−1, respectively. 
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Theorem 2.2. Specifying a complex structure on 
an R -linear space is 𝒳(𝑀)equivalent to splitting 
𝒳𝑪(𝑀)into a direct sum of two complex 
conjugate subspaces that serve as proper 
subspaces of this complex structure. 
 
Proof. Necessity follows from Theorem 2.1. Let 
now 𝒳𝑪(𝑀) = 𝐷 ⊕ 𝜏𝐷. Then ∀𝑋 ∈ 𝒳𝑪(𝑀) ⟹
𝑋 = 𝑋1 + 𝑋2;  𝑋1 ∈ 𝐷, 𝑋2 ∈ 𝜏𝐷. We construct an 
endomorphism 𝒥: 𝒳𝑪(𝑀) ⟶ 𝒳𝑪(𝑀)by setting 

𝒥(𝑋) = √−1(𝑋1 − 𝑋2). Obviously, 𝜏(𝑋) =
𝜏(𝑋1) + 𝜏(𝑋2), and 𝜏(𝑋1) ∈ 𝜏𝐷, 𝜏(𝑋2) ∈ 𝐷. 

Therefore (𝒥 ∘ 𝜏)(𝑋) = √−1(𝜏(𝑋2) − 𝜏(𝑋1)). 

On the other hand, due to the antilinearity of the 

operator , (𝜏 ∘ 𝒥)(𝑋) = −√−1(𝜏(𝑋1) −

𝜏(𝑋2)) = √−1(𝜏𝑋2 − 𝜏𝑋1). Thus, 𝒥 ∘ 𝜏 = 𝜏 ∘ 𝒥. 

So, 𝒥 = 𝐽𝑪for some R -linear endomorphism 
𝐽: 𝒳(𝑀) → 𝒳(𝑀). Obviously, 𝒥2 = −𝑖𝑑, in 
particular, 𝐽2 = −𝑖𝑑, i.e. 𝐽is the complex 
structure on 𝒳(𝑀). If 𝑋 ∈ 𝐷, then 𝑋 = 𝑋1, which 

means 𝒥(𝑋) = √−1𝑋1 = √−1𝑋. Therefore, 𝐷 ⊂

𝐷𝐽
√−1. Conversely, if 𝑋 ∈ 𝐷𝐽

√−1, then √−1(𝑋1 −

𝑋2) = 𝒥(𝑋) = √−1𝑋 = √−1(𝑋1 + 𝑋2), whence 

𝑋2 = 0, and hence 𝑋 ∈ 𝐷. Therefore, 𝐷𝐽
√−1 ⊂ 𝐷, 

i.e. 𝐷𝐽
√−1 = 𝐷. Likewise, 𝐷𝐽

−√−1 = 𝜏𝐷. 

      
   
Lemma 2.1. In the introduced notation, 
1) 𝜏 ∘ 𝜎 = 𝜎 ∘ 𝜏,  
2) 𝜏 ∘ 𝜎 = 𝜎 ∘ 𝜏. 
 
Proof. Taking into account the antilinearity of 
the mapping and using the fact that a C -linear 
operator 𝐹: 𝒳𝑪(𝑀) → 𝒳𝑪(𝑀)is a linear 
extension of some R -linear operator 𝑓: 𝒳(𝑀) →
𝒳(𝑀)if and only if, 𝜏 ∘ 𝐹 = 𝐹 ∘ 𝜏we have: 𝜏 ∘

𝜎(𝑋) =
1

2
𝜏(𝑋 − √−1𝐽𝑋) =

1

2
(𝜏𝑋 + √−1𝜏 ∘

𝐽𝑋) =
1

2
(𝜏𝑋 + √−1𝐽 ∘ 𝜏𝑋) = 𝜎 ∘ 𝜏(𝑋); 𝑋 ∈

𝒳𝑪(𝑀).The second relation is proved similarly.
   
 

Theorem 2.3. The mappings 𝜎|𝑉: 𝑉 → 𝐷𝐽
√−1and 

𝜎|𝑉: 𝑉 → 𝐷𝐽
−√−1are, respectively, an isomorphism 

and an anti-isomorphism of C -linear spaces. 
 

Proof. The additivity of the mappings 𝜎|𝒳(𝑀)and 

𝜎|𝒳(𝑀)is obvious. Let now 𝑧 = 𝛼 + √−1𝛽 ∈

𝑪, 𝑋 ∈ 𝒳(𝑀). As already seen, 𝜎 ∘ 𝐽 = 𝐽 ∘ 𝜎 =

√−1𝜎, 𝜎 ∘ 𝐽 = 𝐽 ∘ 𝜎 = −√−1𝜎. Therefore 

𝜎(𝑧𝑋) = 𝜎(𝛼𝑋 + 𝛽𝐽𝑋) = 𝛼𝜎𝑋 + 𝛽√−1𝜎𝑋 =
𝑧(𝜎𝑋). Similarly, 𝜎(𝑧𝑋) = 𝑧̅(𝜎𝑋), and thus the 
maps 𝜎|𝒳(𝑀)and 𝜎|𝒳(𝑀)are, respectively, a 

homomorphism and an antihomomorphism of C 
-linear spaces. 

Let ∃𝑋 ∈ 𝒳(𝑀)and 𝜎𝑋 = 0. Applying the 
operator to both parts of this identity , taking 
into account Lemma 2.1, we obtain that 𝜎𝑋 = 0, 
and hence 𝑋 = 𝜎𝑋 + 𝜎𝑋 = 0. Therefore, 
ker𝜎|𝒳(𝑀) = {0}. Similarly, ker𝜎|𝒳(𝑀) = {0}, 

i.e.,𝜎and 𝜎are monomorphism and 
antimonomorphism, respectively. 

Let, finally 𝑋 ∈ 𝐷𝐽
√−1. Consider the vector 

𝑌 = 𝑋 + 𝜏𝑋. Then 𝑌 ∈ 𝒳(𝑀). On the other hand, 
since, 𝑋 ∈ 𝐼𝑚 𝜎 = ker 𝜎taking into account 
Lemma 2.1, we have: 𝜎𝑌 = 𝜎𝑋 + (𝜏 ∘ 𝜎)𝑋 = 𝑋 +

(𝜏 ∘ 𝜎)𝑋 = 𝑋. Similarly, if 𝑋 ∈ 𝐷𝐽
−√−1, then 𝜎𝑌 =

𝑋, and, thus, 𝜎|𝒳(𝑀)and 𝜎|𝒳(𝑀)are an 

epimorphism and an anti-epimorphism, 
respectively.     
  
 
Let, in particular, V be a finite-dimensional R -
linear space, dim 𝑀 = 2𝑛, and let 𝑏 =
{𝑒1, … , 𝑒𝑛}be its basis as a C -module. Consider a 
system of vectors 𝑏𝐴 = {𝜀1, … , 𝜀𝑛, 𝜀1̂, … , 𝜀𝑛̂}, 
where 𝜀𝑎 = 𝜎(𝑒𝑎), 𝜀𝑎̂ = 𝜎(𝑒𝑎); 𝑎 = 1, … , 𝑛. By 
Theorem 2.3, vectors {𝜀1, … , 𝜀𝑛}form a basis of a 

C -linear space 𝐷𝐽
√−1, and vectors form 

{𝜀1̂, … , 𝜀𝑛̂}a basis of a C -linear space 𝐷𝐽
−√−1, and, 

by virtue of Lemma 2.1, 𝜏𝜀𝑎 = (𝜏 ∘ 𝜎)𝑒𝑎 =
(𝜎 ∘ 𝜏)𝑒𝑎 = 𝜎𝑒𝑎 = 𝜀𝑎̂. Moreover, because of 
Theorem 2.1, the system of vectors 𝑏𝐴 =
{𝜀1, … , 𝜀𝑛, 𝜀1̂, … , 𝜀𝑛̂}forms a basis of the space 𝑉𝐶 , 
characterized by the fact that the 
endomorphism matrix 𝐽in this basis has the 
form 

(𝐽𝑗
𝑖) = (

√−1𝐼𝑛 0

0 −√−1𝐼𝑛

),   

     (2 .1) 
Let's call such a basis adapted to the complex 
structure, in short A-basis. 
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3. Hermitian structures 
Definition 3.1. Let V be a real linear space. A 
Hermitian structure on V is a pair (𝐽, 𝑔 = 〈∙,∙〉), 
where 𝐽is a complex structure on V, 𝑔 = 〈∙,∙〉is a 
(pseudo) Euclidean structure, and 
〈𝐽𝑋, 𝐽𝑌〉 = 〈𝑋, 𝑌〉, 𝑋, 𝑌 ∈ 𝑉.    
  (3.1) 
 
Let be (𝐽, 𝑔 = 〈∙,∙〉)a Hermitian structure on V. 
Let us construct a mapping Ω: 𝑉 × 𝑉 → 𝑅by 
setting Ω(𝑋, 𝑌) = 〈𝑋, 𝐽𝑌〉, 𝑋, 𝑌 ∈ 𝑉. Obviously 
Ω(𝑌, 𝑋) = 〈𝑌, 𝐽𝑋〉 = 〈𝐽𝑌, 𝐽2𝑋〉 = −〈𝐽𝑌, 𝑋〉 =
−〈𝑋, 𝐽𝑌〉 = −Ω(𝑋, 𝑌). Thus, Ωis an outer 2-form 
on V . It is called the fundamental formof 
structure. Obviously, its skew-symmetry is 
equivalent to the identity 
〈𝐽𝑋, 𝑌〉 = −〈𝑋, 𝐽𝑌〉;  𝑋, 𝑌 ∈ 𝑉,   
   ( 3.2) 
which, in turn, is equivalent to (3.1). An obvious 
consequence of this identity is the important 
relation 
〈𝑋, 𝐽𝑋〉 = 0;  𝑋 ∈ 𝑉.     
   (3.3) 
Recall that a Hermitian form on a complex linear 
space W is a mapping ℎ: 𝑊 × 𝑊 → 𝑪such that: 
1) ℎ(𝑋 + 𝑌, 𝑍) = ℎ(𝑋, 𝑍) + ℎ(𝑌, 𝑍); 
2) ℎ(𝑋, 𝑌 + 𝑍) = ℎ(𝑋, 𝑌) + ℎ(𝑋, 𝑍); 
3) ℎ(𝑧𝑋, 𝑌) = 𝑧ℎ(𝑋, 𝑌);   ℎ(𝑋, 𝑧𝑌) = 𝑧̅ℎ(𝑋, 𝑌); 

4) ℎ(𝑋, 𝑌) = ℎ(𝑌, 𝑋)̅̅ ̅̅ ̅̅ ̅̅ ̅;   𝑋, 𝑌, 𝑍 ∈ 𝑊, 𝑧 ∈ 𝑪. 
The first two properties are, as usual, called 
additivity, the third, sesquilinearity, and the 
fourth, hermitian. The notions of non-
degeneracy and positive definiteness of a 
Hermitian form are defined in the usual way. 
The non-degenerate Hermitian form will often 
be called the Hermitian metric, and the C -linear 
space in which the Hermitian metric is fixed will 
be called the Hermitian space. 
 
Theorem 3.1. Specifying a Hermitian structure 
(𝐽, 〈∙,∙〉)in a linear spaceV is equivalent to 
specifying a non-degenerate Hermitian form ℎ =
〈〈∙,∙〉〉in V, considered as a C - linear with respect 
to 𝐽space. The positive definiteness of a form is 
〈〈∙,∙〉〉equivalent to the positive definiteness of a 
bilinear form 〈∙,∙〉. 
 
Proof. Let be (𝐽, 〈∙,∙〉)a Hermitian structure on V 

. Let 〈〈𝑋, 𝑌〉〉 = 〈𝑋, 𝑌〉 + √−1〈𝑋, 𝐽𝑌〉; 𝑋, 𝑌 ∈ 𝑉. 
Taking into account (4.1) and (4.2), it is obvious 

that 〈〈𝐽𝑋, 𝑌〉〉 = 〈𝐽𝑋, 𝑌〉 + √−1〈𝐽𝑋, 𝑌〉 =

√−1〈𝑋, 𝑌〉 − 〈𝑋, 𝐽𝑌〉 = √−1(〈𝑋, 𝑌〉 +

√−1〈𝑋, 𝐽𝑌〉) = √−1〈〈𝑋, 𝑌〉〉. Similarly, 

〈〈𝑋, 𝐽𝑌〉〉 = −√−1〈〈𝑋, 𝑌〉〉, whence, taking into 
account the definition of a C -module in V, it 
follows that the form 〈〈∙,∙〉〉is linear in the first 
and antilinear in the second argument. In 

addition, 〈〈𝑌, 𝑋〉〉 = 〈𝑌, 𝑋〉 + √−1Ω(𝑌, 𝑋) =

〈𝑋, 𝑌〉 − √−1Ω(𝑋, 𝑌) = 〈〈𝑋, 𝑌〉〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Thus, 〈〈∙,∙〉〉is a 
Hermitian form on V. Obviously, it is non-
degenerate. 

Conversely, let h be a non-degenerate 
Hermitian form in V . Consider the bilinear 
forms 𝑔 = ℜℎand Ω = ℑℎ- the real and 
imaginary parts of the form h, respectively. 

Thus, ℎ(𝑋, 𝑌) = 𝑔(𝑋, 𝑌) + √−1Ω(𝑋, 𝑌); 𝑋, 𝑌 ∈

𝑉. Since 𝑔(𝑋, 𝑌) + √−1Ω(𝑋, 𝑌) = ℎ(𝑋, 𝑌) =

ℎ(𝑌, 𝑋)̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑔(𝑌, 𝑋) − √−1Ω(𝑌, 𝑋), then, 
comparing the real and imaginary parts, we 
have: 
1) 𝑔(𝑋, 𝑌) = 𝑔(𝑌, 𝑋);   2) Ω(𝑋, 𝑌) = −Ω(𝑌, 𝑋). 
   (4.4) 

Next, √−1𝑔(𝑋, 𝑌) − Ω(𝑋, 𝑌) = √−1ℎ(𝑋, 𝑌) =

−ℎ(𝑋, 𝐽𝑌) = −𝑔(𝑋, 𝐽𝑌) − √−1Ω(𝑋, 𝐽𝑌). 
Comparing the real and imaginary parts, we get 
that 
1) Ω(𝑋, 𝑌) = 𝑔(𝑋, 𝐽𝑌);   2) 𝑔(𝑋, 𝑌) = −Ω(𝑋, 𝐽𝑌). 
In particular, 
𝑔(𝐽𝑋, 𝐽𝑌) = Ω(𝐽𝑋, 𝑌) = −Ω(𝑌, 𝐽𝑋) = 𝑔(𝑋, 𝑌). 
Wherein 

ℎ(𝑋, 𝑌) = 𝑔(𝑋, 𝑌) + √−1𝑔(𝑋, 𝐽𝑌) = 〈〈𝑋, 𝑌〉〉. 
Taking into account the last relation, it is 
obvious that the bilinear form is non- 
𝑔degenerate, and the positive definiteness of 
the form is 𝑔equivalent to the positive 
definiteness of the form ℎ. Thus, (𝐽, 𝑔)is a 
Hermitian structure, and Ωis its fundamental 
form.      □ 
 
Remark 3.1. In what follows, unless otherwise 
stated, we will always assume that 𝑔 = (∙,∙)is a 
Euclidean structure, which means that the form is 
〈〈∙,∙〉〉positive definite. 
 
Let be (𝐽, 𝑔 = 〈∙,∙〉)a Hermitian structure on a 
linear space V . Then the 𝑉𝑪 = 𝑪 ⊗ 𝑉C -bilinear 
form is naturally defined in space 
𝑔𝑪(∑ 𝑧𝑘𝑋𝑘𝑘 , ∑ 𝑤𝑚𝑌𝑚𝑚 ) = ∑ 𝑧𝑘𝑤𝑘〈𝑋𝑘, 𝑌𝑚〉𝑘,𝑚 , 
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or, alternatively, 

𝑔𝑪(𝑋 + √−1𝑌, 𝑍 + √−1𝑊) = (〈𝑋, 𝑍〉 −

〈𝑌, 𝑊〉) + √−1(〈𝑋, 𝑊〉 + 〈𝑌, 𝑍〉). 
Obviously, this form is non-degenerate (which is 
easier to see from its alternative definition). It is 
called the linearity extension of theform 𝑔. 
Allowing the liberty of speech, we will further 
designate it in the same way as the form itself 𝑔. 
 
Theorem 3.2. The proper subspaces of the 
endomorphism 𝐽are completely isotropic with 
respect to the form 𝑔. 
 

Proof. Let 𝑋̃, 𝑌̃ ∈ 𝐷𝐽
√−1. Since the mappings 

𝜎|𝑉: 𝑉 → 𝐷𝐽
√−1and 𝜎|𝑉: 𝑉 → 𝐷𝐽

−√−1are, 

respectively, an isomorphism and an 
antiisomorphism of C -linear spaces, 𝑋̃ =
𝜎𝑋, 𝑌̃ = 𝜎𝑌for some 𝑋, 𝑌 ∈ 𝑉. So 

〈𝑋̃, 𝑌̃〉 = 〈𝜎𝑋, 𝜎𝑌〉

=
1

4
(〈𝑋 − √−1𝐽𝑋, 𝑌 − √−1𝐽𝑌〉) 

=
1

4
(〈𝑋, 𝑌〉 − 〈𝐽𝑋, 𝐽𝑌〉 + √−1〈𝑋, 𝐽𝑌〉

+ √−1〈𝐽𝑋, 𝑌〉) 

= 0. 

Quite similarly, 〈𝑋̃, 𝑌̃〉 = 0; 𝑋̃, 𝑌̃ ∈ 𝐷𝐽
√−1. 

      
  
 
The form 𝑔naturally introduces the Hermitian 
form 

𝐻(𝑋, 𝑌) = 2〈𝑋, 𝜏𝑌〉;  𝑋, 𝑌 ∈ 𝑉𝑪 
in space 𝑉𝑪. From the non-degeneracy of the 
form 𝑔(and of the operator 𝜏) it follows that the 
form H is non-degenerate. Further, it is fair 
 
Proposition 3.1. The proper subspaces of the 
endomorphism 𝐽are orthogonal with respect to 
the Hermitian metric H. 
 
Proof. This immediately follows from Theorem 
3.1 and the definition of the metric H, because if 

𝑋̃ ∈ 𝐷𝐽
√−1, 𝑌̃ ∈ 𝐷𝐽

−√−1, then 

𝐻(𝑋̃, 𝑌̃) = 2〈𝑋̃, 𝜏𝑌̃〉 = 2〈𝜎𝑋, 𝜏𝜎𝑌〉 =

2〈𝜎𝑋, 𝜎𝑌〉 = 0;  𝑋, 𝑌 ∈ 𝑉.   
  
 
Since the linear space𝑉𝑪decomposes into a 

direct sum of eigenspaces of the endomorphism 

𝐽corresponding to the eigenvalues √−1and 

−√−1, i.e., 𝑉𝑪 = 𝐷𝐽
√−1 ⊕ 𝐷𝐽

−√−1, and the 

endomorphisms 𝜎and 𝜎are projections onto the 

subspaces 𝐷𝐽
√−1and 𝐷𝐽

−√−1, respectively, we 

obtain: 
 
Theorem 3.3. The linear space 𝑉𝑪decomposes 
into an orthogonal direct sum of the eigenspaces 
of the endomorphism 𝐽corresponding to the 

eigenvalues √−1and −√−1, i.e.,𝑉𝑪 = 𝐷𝐽
√−1 ⊕

𝐷𝐽
−√−1.  

 

Theorem 3.4. Themappings 𝜎: 𝑉 → 𝐷𝐽
√−1and 

𝜎: 𝑉 → 𝐷𝐽
−√−1are, respectively, an isometry and 

an anti-isometry of C -linear spaces with respect 
to the Hermitian metrics 〈〈∙,∙〉〉on V and H on 

𝐷𝐽
±√−1. 

 
Proof.Let 𝑋, 𝑌 ∈ 𝑉. Then 

𝐻(𝜎𝑋, 𝜎𝑌) =
1

4
𝐻(𝑋 − √−1𝐽𝑋, 𝑌

− √−1𝐽𝑌) 

=
1

2
〈𝑋 − √−1𝐽𝑋, 𝑌 + √−1𝐽𝑌〉 

=
1

2
(〈𝑋, 𝑌〉 + 〈𝐽𝑋, 𝐽𝑌〉 + √−1〈𝑋, 𝐽𝑌〉

− √−1〈𝐽𝑋, 𝑌〉) 

= (〈𝑋, 𝑌〉 + √−1〈𝑋, 𝐽𝑌〉) 

= 〈〈𝑋, 𝑌〉〉. 

It is proved similarly that 𝐻(𝜎̅𝑋, 𝜎𝑌) = 〈〈𝑋, 𝑌〉〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ .
      
  
 
Theorems 3.1, 3.3, and 3.4 immediately imply 
Proposition 3.2.A Hermitian metric H is positive 
definite if and only if 𝑔is a Euclidean structure. 
 
Proof. By virtue of Theorem 3.3, it suffices to 
prove the assertion for the restrictions of the 
metric H to proper subspaces of the 
endomorphism 𝐽. But for them, it is true by 
virtue of Theorems 3.4 and 3.1.  
      
     
 



Volume 7| June 2022                                                                                                                                             ISSN: 2795-7667 

 

Eurasian Journal of Physics, Chemistry and Mathematics                                                               www.geniusjournals.org 
P a g e  | 94 

Let, in particular, V be a finite-dimensional R -
linear space, dim 𝑀 = 2𝑛, and let 𝑏 =
{𝑒1, … , 𝑒𝑛}be its basis as a C -module. Applying, 
if necessary, the Gram-Schmidt 
orthogonalization procedure, we can assume 
without loss of generality that 𝑏 = {𝑒1, … , 𝑒𝑛}is a 
basis orthonormal with respect to the Hermitian 
metric 〈〈∙,∙〉〉. Note the following useful 
 
Proposition 3.3.The RA -basis corresponding to 
the orthonormal basis 𝑏 = {𝑒1, … , 𝑒𝑛}, is 
orthonormal with respect to the metric 𝑔. 
 
Proof.Due to the orthonormality of the basis 
𝑏 = {𝑒1, … , 𝑒𝑛}with respect to 〈〈∙,∙〉〉, 〈〈𝑒𝑎, 𝑒𝑏〉〉 =

〈𝑒𝑎, 𝑒𝑏〉 + √−1〈𝑒𝑎, 𝐽𝑒𝑏〉 = 𝛿𝑎𝑏 . From here 
〈𝑒𝑎, 𝑒𝑏〉 = 𝛿𝑎𝑏; 〈𝑒𝑎, 𝐽𝑒𝑏〉 = 0; 〈𝐽𝑒𝑎, 𝐽𝑒𝑏〉 =
〈𝑒𝑎, 𝑒𝑏〉 = 𝛿𝑎𝑏; 〈𝐽𝑒𝑎, 𝑒𝑏〉 = −〈𝑒𝑎, 𝐽𝑒𝑏〉 = 0. 
      
   
 
Consider a system of vectors 𝑏𝐴 =

{𝜀1, … , 𝜀𝑛, 𝜀1̂, … , 𝜀𝑛̂}, where 𝜀𝑎 = √2𝜎(𝑒𝑎), 𝜀𝑎̂ =

√2𝜎(𝑒𝑎); 𝑎 = 1, … , 𝑛.By Theorem 3.4, the 
vectors {𝜀1, … , 𝜀𝑛}form orthogonal with respect 
to the Hermitian metric Hthe basis of the space 

𝐷𝐽
√−1, and the vectors are the basis of the space 

{𝜀1̂, … , 𝜀𝑛̂}orthogonal with respect to the same 

metric 𝐷𝐽
−√−1, and, as in the case of almost 

complex structures, 𝜏𝜀𝑎 = 𝜀𝑎̂. Moreover, by 
Theorem 3.3, the system of vectors 𝑏𝐴forms a 
Hermitian space basis orthogonal with respect 
to the same metric (𝑉𝑪, 𝐻)(the norm of basis 

vectors in such a metric is obviously √2). Let's 
call a basis of this kind modified A-basis. The 
modified A -basis differs from the usual A -basis 
attached to an almost complex structure 𝐽, 
firstly, by the obligatory orthogonality, and 

secondly, by the presence of a factor √2in the 
definition of its elements. However, taking the 
liberty of speech, by A -bases of a Hermitian 
space we will always understand modified A -
bases. 
 
Proposition 3.4.The modified A -basis of the 
Hermitian space is characterized by the fact that 
the matrices of the components of the tensors 
𝐽and 𝑔have the form in it, respectively: 

1) (𝐽𝑗
𝑖) = (

√−1𝐼𝑛 0

0 −√−1𝐼𝑛

) ;   2) (𝑔𝑖𝑗) =

(
0 𝐼𝑛

𝐼𝑛 0
).     (3.5) 

 
Proof.The first of these relations is defined by 
Theorem 3.3, the system of vectors 𝑏𝐴 =
{𝜀1, … , 𝜀𝑛, 𝜀1̂, … , 𝜀𝑛̂}forms a basis of the space 𝑉𝑪, 
characterized by the fact that the 
endomorphism matrix 𝐽in this basis has the 
form (3.5:1). As for the second relation, then, 
taking into account Theorem 3.2, 𝑔𝑎𝑏 =
〈𝜀𝑎, 𝜀𝑏〉 = 0; 𝑔𝑎̂𝑏̂ = 〈𝜀𝑎̂, 𝜀𝑏̂〉 = 0. Moreover, 
taking into account Theorem 3.4, 𝑔𝑎𝑏̂ = 𝑔𝑎̂𝑏 =

〈𝜀𝑎, 𝜀𝑏̂〉 = 〈𝜀𝑎, 𝜏𝜀𝑏〉 =
1

2
𝐻(𝜀𝑎, 𝜀𝑏) =

𝐻(𝜎𝑒𝑎, 𝜎𝑒𝑏) = 〈〈𝑒𝑎, 𝑒𝑏〉〉 = 𝛿𝑎
𝑏.   

Remark 3.2. Taking into account the formula 
(3.5:2), the operation of lowering the index 𝑋𝑖 →
𝑋𝑖 = 𝑔𝑖𝑗𝑋𝑗in the modified A -basis will be written 

as follows: 𝑋𝑎 = 𝑔𝑎𝑏𝑋𝑏 + 𝑔𝑎𝑏̂𝑋𝑏̂ = 𝑋𝑎̂;  𝑋𝑎̂ =

𝑔𝑎̂𝑏𝑋𝑏 + 𝑔𝑎̂𝑏̂𝑋𝑏̂ = 𝑋𝑎and, thus, 

𝑋𝑎 = 𝑋𝑎̂;  𝑋𝑎̂ = 𝑋𝑎 . 
Similarly for tensors of arbitrary type. 
 
Now let 𝑏 = {𝑒1, … , 𝑒𝑛}and 𝑏̃ = {𝑒̃1, … , 𝑒̃𝑛}be 
two orthonormal bases of the space V , 𝐶 =
𝐶𝑏𝑏̃ = (𝑐𝑏

𝑎)be the transition matrix from basis 

𝑏to basis 𝑏̃. Obviously, 𝐶 ∈ 𝑈(𝑛), and the 
formula 

𝐶𝑏𝐴𝑏̃𝐴
= (

𝐶 0
0 𝐶̅) , 𝐶 ∈ 𝑈(𝑛),   

   (3.6) 
defines an embedding of Lie groups 𝑈(𝑛) ⊂
𝐺𝐿(2𝑛, 𝑪)and hence a right action of a Lie group 
𝑈(𝑛)on the set of orthonormal bases of a given 
Hermitian structure. 

 
4. Almost Hermitian structure and its 
associated G -structure 
Definition 4.1. Almost Hermitian (in short, 𝒜ℋ-
) structure onan n-dimensional manifold𝑀2𝑛is 
called a pair (𝐽, 𝑔), where 𝐽is an almost complex 
structure on M, 𝑔 = 〈∙,∙〉is a Riemannian metric 
on M. Wherein 
〈𝐽𝑋, 𝐽𝑌〉 = 〈𝑋, 𝑌〉; 𝑋, 𝑌 ∈ 𝒳(𝑀), 
where 𝒳(𝑀)is 𝐶∞(𝑀)the modulus of smooth 
vector fields on 𝑀2𝑛. An endomorphism 𝐽is called 
a structural endomorphism. A manifold on which 
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an almost Hermitian structure is fixed is called an 
almost Hermitian (in short, 𝒜ℋ-) manifold. 
 
Proposition 4.1. Every almost complex manifold 
has an almost Hermitian structure. 
 
Proof. Let be 𝑔̃an arbitrary Riemannian metric 
on an almost complex manifold (𝑀, 𝐽). Let's 
build a bilinear form 𝑔(𝑋, 𝑌) = 𝑔̃(𝑋, 𝑌) +
𝑔̃(𝐽𝑋, 𝐽𝑌); 𝑋, 𝑌 ∈ 𝒳(𝑀). Obviously, the form is 
𝑔positive definite and hence is a Riemannian 
structure. It is also obvious that 𝑔(𝐽𝑋, 𝐽𝑌) =
𝑔(𝑋, 𝑌), which means that the pair (𝐽, 𝑔)is an 
almost Hermitian structure on 𝑀2𝑛. 
     
 
Obviously, an almost Hermitian structure can be 
considered as a Hermitian structure of a module 
𝒳(𝑀)considered as an R -linear space. Setting 
an almost Hermitian structure is 
(𝐽, 𝑔)equivalent to setting a Hermitian structure 

〈〈𝑋, 𝑌〉〉 = 〈𝑋, 𝑌〉 + √−1〈𝑋, 𝐽𝑌〉in this space, 
considered as a C -module with respect to the 
complex structure 𝐽. 
Let be (𝐽, 𝑔)an almost Hermitian structure on 
the manifold M. It induces almost Hermitian 
structures (𝐽𝑚, 𝑔𝑚)at every point 𝑚 ∈ 𝑀. 
 
Theorem 4.1. Specifying an almost Hermitian 
structure on a smooth manifold 𝑀2𝑛is equivalent 
to specifying a G -structure on this manifold with 
the structure group 𝐺 = 𝑈(𝑛). 
 
Proof. Let be 𝐽an almost Hermitian structure on 
M. Then, at each point 𝑚 ∈ 𝑀, a family of 
ℛ𝑚orthonormal frames of the space is defined 
𝑇𝑚(𝑀), which is considered as an n-dimensional 
C -linear space. It follows from the definition of 
a frame that a group 𝑈(𝑛)acts in each such 
family freely and transitively.  
      
   
 
Lemma 4.1. In some neighborhood U of an 
arbitrary point 𝑚 ∈ 𝑀, one can construct a 
family of vector fields {𝑒1

0, … , 𝑒𝑛
0}on U that form 

an orthonormal basis of a module 𝒳(𝑈)as a 𝑪 ⊗
𝐶∞(𝑈)-module. 
 

Proof. We fix 𝑚 ∈ 𝑀some basis at a point 𝑝 =
{𝜉1, … , 𝜉𝑛, 𝐽𝑚𝜉1, … , 𝐽𝑚𝜉𝑛}. The system of vectors 
𝜉𝑘can be extended to a system of vector fields 
𝑒𝑘

0(𝑘 = 1, … , 𝑛)on M . In this case, the system of 
vectors 𝐽𝑚𝜉𝑘will continue to the system of 
vector fields 𝐽𝑒𝑘

0. Since the linear independence 
of the vectors of the frame 𝑝is equivalent to the 
inequality zero of the determinant of the 
transition matrix from the natural basis at the 
point 𝑚to the basic part of the frame 𝑝, this 
property is preserved in some neighborhood U 
of the point 𝑚for vector fields as well 
{𝑒1

0, … , 𝑒𝑛
0, 𝐽𝑒1

0, … , 𝐽𝑒𝑛
0}. But then, obviously, the 

system {𝑒1
0, … , 𝑒𝑛

0}of vector fields on U will be 
𝑪 ⊗ 𝐶∞(𝑈)-linearly independent, and hence 
forms a basis of the 𝑪 ⊗ 𝐶∞(𝑈)-module 𝒳(𝑈). 
Applying the Gram-Schmidt orthogonalization 
procedure to this basis, we obtain the desired 
orthonormal basis.   
 
Let's continue the proof of Theorem 4.1. The 
basis of the view {𝑒1, … , 𝑒𝑛, 𝐽𝑒1, … , 𝐽𝑒𝑛}is called 
the RA -basis. Let us denote 𝐵𝐽𝑀 = ⋃ ℛ𝑚𝑚∈𝑀 , 

and introduce the natural projection 𝜋: ℛ →
𝑀that assigns the vertex to the frame 𝑝 ∈ ℛ. 
Now we can construct the mapping 
𝐹𝑈: 𝜋−1(𝑈) → 𝐺𝐿(𝑛, 𝑪)by setting 𝐹𝑈(𝑝) = 𝑔, 
where 𝑔is the transition matrix from the frame 
(𝑚, 𝑒1

0|𝑚, … , 𝑒𝑛
0|𝑚)to the frame p. Further, it is 

easy to verify that the quadruple 𝐵𝐽(𝑀) =

(ℛ, 𝑀, 𝜋, 𝐺 = 𝐺𝐿(𝑛, 𝑪))forms a principal 

bundle. This principal bundle can be considered 
as a G - structure with respect to the 
monomorphism (𝑓, 𝜌)of the principal bundle 
𝐵𝐽(𝑀)into the principal bundle 𝐵(𝑀), where 

𝑓: ℛ → 𝐵𝑀is the map that associates the 
(𝑚, 𝑒1, … , 𝑒𝑛)space frame 𝑇𝑚(𝑀)as a C - module 
with the corresponding RA -frame, and 
𝜌: 𝐺𝐿(𝑛, 𝑪) → 𝐺𝐿(2𝑛, 𝑹)is the canonical Lie 
group monomorphism that associates the 

matrix with 𝐶 = 𝐴 + √−1𝐵 ∈ 𝐺𝐿(𝑛, 𝑪)the 

matrix 𝜌(𝐶) = (
𝐴 −𝐵
𝐵 𝐴

)whose image is the Lie 

group 𝐺𝐿𝑅(𝑛, 𝑪). 

Conversely, let be (ℛ, 𝑀, 𝜋, 𝐺𝐿𝑅(𝑛, 𝑪))a G 

-structure of this type on M . Let be 𝐽0a standard 
complex structure in space 𝑹2𝑛given by a matrix 

of the form (𝐽𝑗
𝑖) = (

0 −𝐼𝑛

𝐼𝑛 0
). Let be 𝑚 ∈ 𝑀an 
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arbitrary point. We define an endomorphism 
𝐽𝑚in space by the 𝑇𝑚(𝑀)formula 𝐽𝑚 = 𝑝 ∘ 𝐽0 ∘
𝑝−1; 𝑝 ∈ 𝜋−1(𝑚). Obviously, 𝐽𝑚

2 = −𝑖𝑑, i.e. 𝐽𝑚is 
the complex structure on 𝑇𝑚(𝑀). Let us show 
that it is well defined in the sense of being 
independent of the choice of the element 𝑝 ∈
𝜋−1(𝑚). Indeed, if 𝑝 ∈ 𝜋−1(𝑚)is another such 
element, then ∃ℎ ∈ 𝐺𝐿𝑅(𝑛, 𝑪)and 𝑝 = 𝑝ℎ. 
Therefore, 𝑝 ∘ 𝐽0 ∘ 𝑝−1 = (𝑝ℎ) ∘ 𝐽0 ∘ (𝑝ℎ)−1 =
𝑝 ∘ (ℎ ∘ 𝐽0 ∘ ℎ−1) ∘ 𝑝−1 = 𝑝 ∘ 𝐽0 ∘ 𝑝−1 = 𝐽𝑚since 
the group 𝐺𝐿𝑅(𝑛, 𝑪)is obviously an 
endomorphism invariance group 𝐽0, i.e., ℎ𝐽0 =
𝐽0ℎ; ℎ ∈ 𝐺𝐿𝑅(𝑛, 𝑪), which is checked directly. 

Let us show that the family of tensors 𝐽 =
{𝐽𝑚|𝑚 ∈ 𝑀}defines a smooth tensor field on the 
manifold M . To do this, it suffices to prove that 
any admissible map (𝑈, 𝜑)on M of functions 

𝑚 → 𝐽𝑗
𝑖(𝑚) = 𝑑𝑥𝑖 (𝐽𝑚 (

𝜕

𝜕𝑥𝑗|
𝑚

)) , 𝑚 ∈ 𝑀, are 

smooth on U . Let us fix a local section 𝑠: 𝑈 →
ℛof the space of the G -structure. Then, by 
construction, in the RA -frame 𝜎(𝑚)(and dual-
coreframe) we have: 

(𝑒𝑖 (𝐽𝑚(𝑒𝑗))) = (
0 −𝐼𝑛

𝐼𝑛 0
) = ((𝐽0)𝑗

𝑖 ). 

The smoothness of the section is expressed in 
the fact that the components of the matrix C of 
the transition from the natural basis of the 
module 𝒳(𝑈)to the RA -basis 𝜎(𝑈)of this 
module, and hence the components of the 
inverse matrix 𝐶̃, are smooth functions. 

Therefore, 𝑚 → 𝐽𝑗
𝑖(𝑚) = 𝑑𝑥𝑖 (𝐽𝑚 (

𝜕

𝜕𝑥𝑗|
𝑚

)) =

𝐶𝑘
𝑖 (𝑚)𝑒𝑘 (𝐽𝑚(𝐶̃𝑗

𝑟(𝑚)𝑒𝑟)) =

𝐶𝑘
𝑖 (𝑚)𝐶̃𝑗

𝑟(𝑚)𝑒𝑘(𝐽𝑚(𝑒𝑟)) =

𝐶𝑘
𝑖 (𝑚)𝐶̃𝑗

𝑟(𝑚)(𝐽0)𝑟
𝑘are smooth functions on U . 

Thus, 𝐽is an almost complex structure. 
Obviously, the family of RA -frames generated 
by it coincides with the space of the G -structure.
   
 
Definition 4.2. TheG - structure 𝐵𝐽𝑀constructed 

above is called the G -structure attached to an 
almost Hermitian structure (𝐽, 𝑔). 

 
5. Approximately Kahlerian structures 
Definition 5.1. An almost Hermitian structure 
on a manifold M is called an approximately 

(nearly) Kahlerian (in short, 𝒩𝒦-) structure if 
the identity 
∇𝑋(𝐽)𝑌 + ∇𝑌(𝐽)𝑋 = 0; 𝑋, 𝑌 ∈ 𝒳(𝑀).  
     (5.1) 
 
Theorem 5.1. An almost Hermitian structure 
(𝐽, 𝑔)on a manifold Μ is approximately Kählerian 
if and only if the identities hold on Μ 
1) 𝐵(𝑋, 𝑌) = 0;   2) 𝐶(𝑋, 𝑌) + 𝐶(𝑌, 𝑋) = 0. 
   (4.2) 
 
Proof. First of all, we note that for 
approximately Kählerian manifolds we have the 
identities 
∇𝐽𝑋(𝐽)𝑌 = ∇𝑋(𝐽)𝐽𝑌 = −𝐽 ∘ ∇𝑋(𝐽)𝑌.   

   (5.3) 
Indeed, in view of the identity 𝐽 ∘ ∇𝑋(𝐽)𝑌 +
∇𝑋(𝐽)𝐽𝑌 = 0, which is valid for any almost 
Hermitian manifold, 
∇𝐽𝑋(𝐽)𝑌 = −∇𝑌(𝐽)(𝐽𝑋) = 𝐽 ∘ ∇𝑌(𝐽)𝑋 = −𝐽 ∘

∇𝑋(𝐽)𝑌 = ∇𝑋(𝐽)(𝐽𝑌). 
From this, it immediately follows that 

𝐵(𝑋, 𝑌) =
1

2
{∇𝐽𝑋(𝐽)𝑌 − ∇𝑋(𝐽)(𝐽𝑌)} = 0; 

𝐶(𝑋, 𝑌) =
1

2
{∇𝐽𝑋(𝐽)𝑌 + ∇𝑋(𝐽)(𝐽𝑌)} = −𝐽 ∘

∇𝑋(𝐽)𝑌 = 𝐽 ∘ ∇𝑌(𝐽)𝑋 = −𝐶(𝑌, 𝑋). 
Conversely, if these relations hold, then 
∇𝑋(𝐽)𝑌 = 𝐽 ∘ 𝐶(𝑋, 𝑌) = −𝐽 ∘ 𝐶(𝑌, 𝑋) =
∇𝑌(𝐽)𝑋; 𝑋, 𝑌 ∈ 𝒳(𝑀). 
Therefore, M is an approximately Kählerian 
manifold.     
  
 
Since an almost Hermitian structure is quasi-
Kählerian if and only if its virtual tensor is equal 
to zero, we obtain 
 
Corollary 5.1. Any approximately Kählerian 
manifold is a quasi-Kählerian manifold. 
 
Almost Hermitian structure (𝐽, 𝑔)on the 
manifold M is approximately Kählerian if and 
only if therelations 

1) 𝐵𝑎𝑏
𝑐 = 0;   2) 𝐵𝑎𝑏𝑐 = 𝐵[𝑎𝑏𝑐];   

   ( 5.4) 
and complex conjugate formulas (in short, f.c.s.). 
By virtue of these relations, the first group of 
structural equations of the NK - structure has 
the form: 
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1) 𝑑𝜔𝑎 = −𝜃𝑏
𝑎 ∧ 𝜔𝑏 +

𝐵𝑎𝑏𝑐𝜔𝑏 ∧ 𝜔𝑐; 
2) 𝑑𝜔𝑎 = 𝜃𝑎

𝑏 ∧ 𝜔𝑏 + 𝐵𝑎𝑏𝑐𝜔𝑏 ∧ 𝜔𝑐.   
   (5.5) 
 
6. Complete group of structural equations 
The second group of structural equations can be 
found using the procedure of differential 
continuation of relations (5.5). To do this, we 
differentiate (5.5:1) externally: 
−𝑑𝜃𝑏

𝑎 ∧ 𝜔𝑏 + 𝜃𝑏
𝑎 ∧ 𝑑𝜔𝑏 + 𝑑𝐵𝑎𝑏𝑐 ∧ 𝜔𝑏 ∧ 𝜔𝑐 +

𝐵𝑎𝑏𝑐𝑑𝜔𝑏 ∧ 𝜔𝑐 − 𝐵𝑎𝑏𝑐𝜔𝑏 ∧ 𝑑𝜔𝑐 = 0. 
We substitute the values from (4.5) into the 
resulting equality, then we get: 
−𝑑𝜃𝑏

𝑎 ∧ 𝜔𝑏 + 𝜃𝑏
𝑎 ∧ (−𝜃𝑐

𝑏 ∧ 𝜔𝑐 + 𝐵𝑏𝑐𝑑𝜔𝑐 ∧

𝜔𝑑) + 𝑑𝐵𝑎𝑏𝑐 ∧ 𝜔𝑏 ∧ 𝜔𝑐 + 𝐵𝑎𝑏𝑐(𝜃𝑏
𝑑 ∧ 𝜔𝑑 +

𝐵𝑏𝑑ℎ𝜔𝑑 ∧ 𝜔ℎ) ∧ 𝜔𝑐 − 𝐵𝑎𝑏𝑐𝜔𝑏 ∧ (𝜃𝑐
𝑑 ∧ 𝜔𝑑 +

𝐵𝑐𝑑ℎ𝜔𝑑 ∧ 𝜔ℎ) = 0. 
We rewrite the resulting equality in the form: 
−∆𝜃𝑏

𝑎 ∧ 𝜔𝑏 + ∆𝐵𝑎𝑏𝑐 ∧ 𝜔𝑏 ∧ 𝜔𝑐 = 0,  
    ( 6.1) 
where 
1) ∆𝜃𝑏

𝑎 = 𝑑𝜃𝑏
𝑎 + 𝜃𝑐

𝑎 ∧ 𝜃𝑏
𝑐 + 2𝐵𝑎𝑑ℎ𝐵ℎ𝑏𝑐𝜔𝑐 ∧ 𝜔𝑑; 

2) ∆𝐵𝑎𝑏𝑐 = 𝑑𝐵𝑎𝑏𝑐 + 𝐵𝑑𝑏𝑐𝜃𝑑
𝑎 + 𝐵𝑎𝑑𝑐𝜃𝑑

𝑏 +
𝐵𝑎𝑏𝑑𝜃𝑑

𝑐 .   (6.2) 
Restricting, as usual, to the area 𝑈 ⊂ 𝑀of some 
map on M, and setting 𝑊 = 𝜋−1(𝑈), we expand 
the restriction of these forms in standard bases 
of modules Λ2(𝑊)and Λ1(𝑊), respectively: 

1) ∆𝜃𝑏
𝑎 = 𝐴𝑏𝑐𝑑

𝑎𝑓ℎ
𝜃𝑓

𝑐 ∧ 𝜃ℎ
𝑑 + 𝐴𝑏𝑐𝑑

𝑎𝑓
𝜃𝑓

𝑐 ∧ 𝜔𝑑 +

𝐴𝑏𝑓
𝑎𝑐𝑑𝜃𝑐

𝑓
∧ 𝜔𝑑 + 𝐴𝑏𝑐𝑑

𝑎 𝜔𝑐 ∧ 𝜔𝑑 + 𝐴𝑏𝑐
𝑎𝑑𝜔𝑐 ∧ 𝜔𝑑 +

𝐴𝑏
𝑎𝑐𝑑𝜔𝑐 ∧ 𝜔𝑑;      

    ( 6.3) 

2) ∆𝐵𝑎𝑏𝑐 = 𝐵         𝑓
𝑎𝑏𝑐𝑑 𝜃𝑑

𝑓
+ 𝐵𝑎𝑏𝑐

𝑑𝜔𝑑 + 𝐵𝑎𝑏𝑐𝑑𝜔𝑑. 

Substituting these relations into (6.1), we obtain 
 

−𝐴𝑏𝑐𝑑
𝑎𝑓ℎ

𝜃𝑓
𝑐 ∧ 𝜃ℎ

𝑑 ∧ 𝜔𝑏 − 𝐴[𝑏|𝑐|𝑑]
𝑎𝑓

𝜃𝑓
𝑐 ∧ 𝜔𝑑 ∧ 𝜔𝑏 −

𝐴𝑏𝑓
𝑎𝑐𝑑𝜃𝑐

𝑓
∧ 𝜔𝑑 ∧ 𝜔𝑏 − 𝐴[𝑏𝑐𝑑]

𝑎 𝜔𝑐 ∧ 𝜔𝑑 ∧ 𝜔𝑏 −

𝐴[𝑏𝑐]
𝑎𝑑 𝜔𝑐 ∧ 𝜔𝑑 ∧ 𝜔𝑏 − 𝐴𝑏

𝑎𝑐𝑑𝜔𝑐 ∧ 𝜔𝑑 ∧ 𝜔𝑏 +

𝐵         𝑓
𝑎𝑏𝑐𝑑 𝜃𝑑

𝑓
∧ 𝜔𝑏 ∧ 𝜔𝑐 + 𝐵𝑎𝑏𝑐

𝑑𝜔𝑑 ∧ 𝜔𝑏 ∧ 𝜔𝑐 +

𝐵𝑎[𝑏𝑐𝑑]𝜔𝑑 ∧ 𝜔𝑏 ∧ 𝜔𝑐 = 0.  
 
Hence, taking into account the linear 
independence of the basic forms, we obtain that 

1) 𝐴𝑏𝑐𝑑
𝑎𝑓ℎ

= 0;   2) 𝐴[𝑏|𝑐|𝑑]
𝑎𝑓

= 0;   3) 𝐴𝑏𝑓
𝑎𝑐𝑑 =

0;   4) 𝐴[𝑏𝑐𝑑]
𝑎 = 0;   5) 𝐴[𝑏𝑐]

𝑎𝑑 = 0;   6) 𝐴𝑏
𝑎𝑐𝑑 +

𝐵𝑎𝑏𝑐
𝑑 = 0;   7) 𝐵         𝑓

𝑎𝑏𝑐𝑑 = 0;   8) 𝐵𝑎[𝑏𝑐𝑑] = 0. 

      (6.4) 
Similarly, we differentiate (4.5:2) externally: 
𝑑𝜃𝑎

𝑏 ∧ 𝜔𝑏 − 𝜃𝑎
𝑏 ∧ 𝑑𝜔𝑏 + 𝑑𝐵𝑎𝑏𝑐 ∧ 𝜔𝑏 ∧ 𝜔𝑐 +

𝐵𝑎𝑏𝑐𝑑𝜔𝑏 ∧ 𝜔𝑐 − 𝐵𝑎𝑏𝑐𝜔𝑏 ∧ 𝑑𝜔𝑐 = 0.  
We substitute the values from (4.5) into the 
resulting equality, then we get: 
𝑑𝜃𝑎

𝑏 ∧ 𝜔𝑏 − 𝜃𝑎
𝑏 ∧ (𝜃𝑏

𝑐 ∧ 𝜔𝑐 + 𝐵𝑏𝑐𝑑𝜔𝑐 ∧ 𝜔𝑑) +

𝑑𝐵𝑎𝑏𝑐 ∧ 𝜔𝑏 ∧ 𝜔𝑐 + 𝐵𝑎𝑏𝑐(−𝜃𝑑
𝑏 ∧ 𝜔𝑑 + 𝐵𝑏𝑑ℎ𝜔𝑑 ∧

𝜔ℎ) ∧ 𝜔𝑐 − 𝐵𝑎𝑏𝑐𝜔𝑏 ∧ (−𝜃𝑑
𝑐 ∧ 𝜔𝑑 + 𝐵𝑐𝑑ℎ𝜔𝑑 ∧

𝜔ℎ) = 0.  
We rewrite the resulting equality in the form: 
∆𝜃𝑎

𝑏 ∧ 𝜔𝑏 + ∆𝐵𝑎𝑏𝑐 ∧ 𝜔𝑏 ∧ 𝜔𝑐 = 0,   
   (6.5) 
where 
∆𝐵𝑎𝑏𝑐 = 𝑑𝐵𝑎𝑏𝑐 ∧ 𝜔𝑏 − 𝐵𝑑𝑏𝑐𝜃𝑎

𝑑 − 𝐵𝑎𝑑𝑐𝜃𝑏
𝑑 −

𝐵𝑎𝑏𝑑𝜃𝑐
𝑑.   (6.6) 

Let there be equality 

∆𝐵𝑎𝑏𝑐 = 𝐵𝑎𝑏𝑐𝑑
         𝑓

𝜃𝑓
𝑑 + 𝐵𝑎𝑏𝑐𝑑𝜔𝑑 + 𝐵𝑎𝑏𝑐

𝑑𝜔𝑑.  

   (6.7) 
Substituting these ratios and ratios (6.3:1) into 
(6.5), we get: 

𝐴𝑎𝑐𝑑
𝑏𝑓

𝜃𝑓
𝑐 ∧ 𝜔𝑑 ∧ 𝜔𝑏 + 𝐴𝑎𝑐𝑑

𝑏 𝜔𝑐 ∧ 𝜔𝑑 ∧ 𝜔𝑏 +

𝐴𝑎𝑐
[𝑏𝑑]

𝜔𝑐 ∧ 𝜔𝑑 ∧ 𝜔𝑏 + 𝐴𝑎
[𝑏𝑐𝑑]

𝜔𝑐 ∧ 𝜔𝑑 ∧ 𝜔𝑏 +

𝐵𝑎𝑏𝑐𝑑
         𝑓

𝜃𝑓
𝑑 ∧ 𝜔𝑏 ∧ 𝜔𝑐 + 𝐵𝑎[𝑏𝑐𝑑]𝜔

𝑑 ∧ 𝜔𝑏 ∧ 𝜔𝑐 +

𝐵𝑎𝑏𝑐
𝑑𝜔𝑑 ∧ 𝜔𝑏 ∧ 𝜔𝑐 = 0.  

Hence, taking into account the linear 
independence of the basic forms, we obtain that 

1) 𝐴𝑎𝑐𝑑
𝑏𝑓

= 0;   2) 𝐴𝑎𝑐𝑑
𝑏 + 𝐵𝑎𝑏𝑐

𝑑 = 0;   3) 𝐴𝑎𝑐
[𝑏𝑑]

= 0;   4) 𝐴𝑎
[𝑏𝑐𝑑]

= 0;   5) 𝐵𝑎𝑏𝑐𝑑
         𝑓

= 0; 
6) 𝐵𝑎[𝑏𝑐𝑑] = 0.     

    (6.8) 
Taking into account the obtained equalities 
(6.4) and (6.8), expansions (6.3) and (6.7) take 
the form: 

1) 𝑑𝜃𝑏
𝑎 = −𝜃𝑐

𝑎 ∧ 𝜃𝑏
𝑐 + 𝐴𝑏𝑐𝑑

𝑎 𝜔𝑐 ∧ 𝜔𝑑 + (𝐴𝑏𝑐
𝑎𝑑 −

2𝐵𝑎𝑑ℎ𝐵ℎ𝑏𝑐)𝜔𝑐 ∧ 𝜔𝑑 + 𝐴𝑏
𝑎𝑐𝑑𝜔𝑐 ∧ 𝜔𝑑;  ( 6.9) 

2) 𝑑𝐵𝑎𝑏𝑐 + 𝐵𝑑𝑏𝑐𝜃𝑑
𝑎 + 𝐵𝑎𝑑𝑐𝜃𝑑

𝑏 + 𝐵𝑎𝑏𝑑𝜃𝑑
𝑐 =

𝐵𝑎𝑏𝑐
𝑑𝜔𝑑 + 𝐵𝑎𝑏𝑐𝑑𝜔𝑑. 

3) 𝑑𝐵𝑎𝑏𝑐 ∧ 𝜔𝑏 − 𝐵𝑑𝑏𝑐𝜃𝑎
𝑑 − 𝐵𝑎𝑑𝑐𝜃𝑏

𝑑 − 𝐵𝑎𝑏𝑑𝜃𝑐
𝑑 =

𝐵𝑎𝑏𝑐𝑑𝜔𝑑 + 𝐵𝑎𝑏𝑐
𝑑𝜔𝑑. 

From equalities (6.4) and (6.8) we obtain: 

𝐴𝑏𝑐𝑑
𝑎 = 𝐴𝑏

𝑎𝑐𝑑 = 𝐵𝑎𝑏𝑐
𝑑 = 𝐵𝑎𝑏𝑐

𝑑 = 0. 
Thus, relations (6.9) take the form: 
1) 𝑑𝜃𝑏

𝑎 = −𝜃𝑐
𝑎 ∧ 𝜃𝑏

𝑐 + (𝐴𝑏𝑐
𝑎𝑑 − 2𝐵𝑎𝑑ℎ𝐵ℎ𝑏𝑐)𝜔𝑐 ∧

𝜔𝑑;      (6.10 ) 
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2) 𝑑𝐵𝑎𝑏𝑐 + 𝐵𝑑𝑏𝑐𝜃𝑑
𝑎 + 𝐵𝑎𝑑𝑐𝜃𝑑

𝑏 + 𝐵𝑎𝑏𝑑𝜃𝑑
𝑐 =

𝐵𝑎𝑏𝑐𝑑𝜔𝑑; 
3) 𝑑𝐵𝑎𝑏𝑐 − 𝐵𝑑𝑏𝑐𝜃𝑎

𝑑 − 𝐵𝑎𝑑𝑐𝜃𝑏
𝑑 − 𝐵𝑎𝑏𝑑𝜃𝑐

𝑑 =
𝐵𝑎𝑏𝑐𝑑𝜔𝑑, 
where 

𝐴[𝑏𝑐]
𝑎𝑑 = 𝐴𝑏𝑐

[𝑎𝑑]
= 0, 𝐵𝑎[𝑏𝑐𝑑] = 𝐵𝑎[𝑏𝑐𝑑] = 0.  

   ( 6.11) 
 
Remark 6.1. The components of the form of 
𝜁the first canonical connection of ∇̃an arbitrary 
almost Hermitian structure on the space of the 
adjoint G -structure has the form: 

1) 𝜁𝑏
𝑎 = 𝜃𝑏

𝑎 + 𝐵𝑏
𝑎𝑐𝜔𝑐;   2) 𝜁𝑏̂

𝑎 = 0;   3) 𝜁𝑏̂
𝑎̂ =

−𝜃𝑎
𝑏 + 𝐵𝑎𝑐

𝑏 𝜔𝑐;   4) 𝜁𝑏
𝑎̂ = 0.   (6.12) 

In particular, in the case of approximately 
Kahlerian structures 

(𝜁𝑗
𝑗
) = (

𝜃𝑏
𝑎 0

0 𝜃𝑏̂
𝑎̃ = −𝜃𝑎

𝑏).    

   (6.13) 
From these relations it follows that 
∇̃𝑑̂𝐵𝑎𝑏𝑐 = 𝐵𝑎𝑏𝑐𝑑;   ∇̃𝑑𝐵𝑎𝑏𝑐 = 𝐵𝑎𝑏𝑐𝑑;  
    (6.14) 

(here and below ∇̃𝑘𝑡𝑖1…𝑖𝑟

𝑗1…𝑗𝑠 = 𝑡𝑖1…𝑖𝑟;𝑘
𝑗1…𝑗𝑠 , are the 

corresponding components of the covariant 
differential of the tensor t in the first canonical 
connection). The remaining components of the 

tensor ∇̃(𝐴𝑙𝑡 𝐶̃)on the space of the attached G -

structure are equal to zero. It follows from what 
has been said that the functions 𝐵𝑎𝑏𝑐𝑑and 
𝐵𝑎𝑏𝑐𝑑are defined globally on the space of the 
associated G -structure. Moreover, the 
differential continuation of relations (6.10) 
(taking into account the second fundamental 
identity) leads to the relations 

1) 𝑑𝐵𝑎𝑏𝑐𝑑 + 𝐵ℎ𝑏𝑐𝑑𝜃ℎ
𝑎 +

𝐵𝑎ℎ𝑐𝑑𝜃ℎ
𝑏 + 𝐵𝑎𝑏ℎ𝑑𝜃ℎ

𝑐 + 𝐵𝑎𝑏𝑐ℎ𝜃ℎ
𝑑 =

𝐵𝑎𝑏𝑐𝑑ℎ𝜔ℎ; 
 2) 𝑑𝐵𝑎𝑏𝑐𝑑 − 𝐵ℎ𝑏𝑐𝑑𝜃𝑎

ℎ −
𝐵𝑎ℎ𝑐𝑑𝜃𝑏

ℎ − 𝐵𝑎𝑏ℎ𝑑𝜃𝑐
ℎ − 𝐵𝑎𝑏𝑐ℎ𝜃𝑑

ℎ = 𝐵𝑎𝑏𝑐𝑑ℎ𝜔ℎ 
where {𝐵𝑎𝑏𝑐𝑑ℎ, 𝐵𝑎𝑏𝑐𝑑ℎ}is a globally defined 
system of functions on the space of the adjoint G 
-structure that serve as components of the 
second covariant differential of the tensor 
𝐴𝑙𝑡 𝐶̃in the first canonical connection. The 
nonzero components of the Φ = 𝐷𝜁 = 𝑑𝜁 +
1

2
[𝜁, 𝜁]curvature form of the connection ∇̃have 

the form Φ𝑏
𝑎 = (𝐴𝑏𝑐

𝑎𝑑 − 2𝐵𝑎𝑑ℎ𝐵ℎ𝑏𝑐)𝜔𝑐 ∧ 𝜔𝑑and 

f.c.s. 
In particular, since the functions 𝐵𝑎𝑏𝑐and 
𝐵𝑎𝑏𝑐on the space of the adjoint G -structure are 
defined globally, the functions are 𝐴𝑏𝑐

𝑎𝑑also 
defined globally.Thus. Proven 
 
Theorem 6.1. The complete group of structural 
equations of an approximately Kahlerian 
structure has the form: 

1) 𝑑𝜔𝑎 = −𝜃𝑏
𝑎 ∧

𝜔𝑏 + 𝐵𝑎𝑏𝑐𝜔𝑏 ∧ 𝜔𝑐; 
2) 𝑑𝜔𝑎 = 𝜃𝑎

𝑏 ∧
𝜔𝑏 + 𝐵𝑎𝑏𝑐𝜔𝑏 ∧ 𝜔𝑐; 

3) 𝑑𝜃𝑏
𝑎 = −𝜃𝑐

𝑎 ∧

𝜃𝑏
𝑐 + (𝐴𝑏𝑐

𝑎𝑑 −

2𝐵𝑎𝑑ℎ𝐵ℎ𝑏𝑐)𝜔𝑐 ∧ 𝜔𝑑; 

4) 𝑑𝐵𝑎𝑏𝑐 +
𝐵𝑑𝑏𝑐𝜃𝑑

𝑎 + 𝐵𝑎𝑑𝑐𝜃𝑑
𝑏 +

𝐵𝑎𝑏𝑑𝜃𝑑
𝑐 = 𝐵𝑎𝑏𝑐𝑑𝜔𝑑; 
5) 𝑑𝐵𝑎𝑏𝑐 ∧ 𝜔𝑏 −

𝐵𝑑𝑏𝑐𝜃𝑎
𝑑 − 𝐵𝑎𝑑𝑐𝜃𝑏

𝑑 −
𝐵𝑎𝑏𝑑𝜃𝑐

𝑑 = 𝐵𝑎𝑏𝑐𝑑𝜔𝑑, 
where {𝐴𝑏𝑐

𝑎𝑑}is a globally defined system of 

functions on the space of the adjoint G -structure, 
which is symmetric in superscripts and subscripts. 
 
Remark 6.2. Taking into account that 𝜔𝑎̅̅ ̅̅ =

𝜔𝑎;  𝜃𝑏
𝑎̅̅̅̅ = −𝜃𝑎

𝑏;  𝐵𝑎𝑏𝑐̅̅ ̅̅ ̅̅ = 𝐵𝑎𝑏𝑐, and performing 
complex conjugation of the relation (6.10:1), 
taking into account the linear independence of 
the basic forms of the module 𝛬2(𝑀), we obtain 
that 

𝐴𝑏𝑐
𝑎𝑑̅̅ ̅̅ ̅ = 𝐴𝑎𝑑

𝑏𝑐 .      
   (6.17) 
 
7. Fundamental identities of approximately 
Kahlerian manifolds 
Let's differentiate relations (6.10:1) externally: 
−𝑑𝜃𝑐

𝑎 ∧ 𝜃𝑏
𝑐 + 𝜃𝑐

𝑎 ∧ 𝑑𝜃𝑏
𝑐 + 𝑑(𝐴𝑏𝑐

𝑎𝑑 −

2𝐵𝑎𝑑ℎ𝐵ℎ𝑏𝑐) ∧ 𝜔𝑐 ∧ 𝜔𝑑 + (𝐴𝑏𝑐
𝑎𝑑 −

2𝐵𝑎𝑑ℎ𝐵ℎ𝑏𝑐)𝑑𝜔𝑐 ∧ 𝜔𝑑 − (𝐴𝑏𝑐
𝑎𝑑 −

2𝐵𝑎𝑑ℎ𝐵ℎ𝑏𝑐)𝜔𝑐 ∧ 𝑑𝜔𝑑 = 0.  

We substitute the values from (5.5) and (6.10) 
into the resulting equality, then we get: −{𝜃𝑑

𝑎 ∧

𝜃𝑐
𝑑 + (𝐴𝑐𝑑

𝑎ℎ − 2𝐵𝑎ℎ𝑔𝐵𝑔𝑐𝑑)𝜔𝑑 ∧ 𝜔ℎ} ∧ 𝜃𝑏
𝑐 + 𝜃𝑐

𝑎 ∧

{−𝜃𝑑
𝑐 ∧ 𝜃𝑏

𝑑 + (𝐴𝑏𝑑
𝑐ℎ − 2𝐵𝑐ℎ𝑔𝐵𝑔𝑏𝑑)𝜔𝑑 ∧ 𝜔ℎ}𝑑𝜃𝑏

𝑐 +
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𝑑𝐴𝑏𝑐
𝑎𝑑 ∧ 𝜔𝑐 ∧ 𝜔𝑑 − 2𝐵ℎ𝑏𝑐𝑑𝐵𝑎𝑑ℎ ∧ 𝜔𝑐 ∧ 𝜔𝑑 +

(𝐴𝑏𝑐
𝑎𝑑 − 2𝐵𝑎𝑑ℎ𝐵ℎ𝑏𝑐)(−𝜃𝑔

𝑐 ∧ 𝜔𝑔 + 𝐵𝑐𝑔𝑓𝜔𝑔 ∧

𝜔𝑓) ∧ 𝜔𝑑 − (𝐴𝑏𝑐
𝑎𝑑 − 2𝐵𝑎𝑑ℎ𝐵ℎ𝑏𝑐)𝜔𝑐 ∧ (𝜃𝑑

𝑔
∧ 𝜔𝑔 +

𝐵𝑑𝑔𝑓𝜔𝑔 ∧ 𝜔𝑓) = 0.  

We open the brackets and make a ghost of 
similar terms, then we get 
(𝑑𝐴𝑏𝑐

𝑎𝑑 + 𝐴𝑏𝑐
ℎ𝑑𝜃ℎ

𝑎 + 𝐴𝑏𝑐
𝑎ℎ𝜃ℎ

𝑑 − 𝐴ℎ𝑐
𝑎𝑑𝜃𝑏

ℎ − 𝐴𝑏ℎ
𝑎𝑑𝜃𝑐

ℎ) ∧

𝜔𝑐 ∧ 𝜔𝑑 − (𝐴𝑏[𝑐
𝑎𝑓

− 2𝐵𝑎𝑓𝑔𝐵𝑔𝑏[𝑐)𝐵|𝑓|𝑑ℎ]𝜔
𝑐 ∧ 𝜔𝑑 ∧

𝜔ℎ + 2𝐵𝑎ℎ𝑔𝐵𝑔𝑏[𝑐𝑑]𝜔
𝑐 ∧ 𝜔𝑑 ∧ 𝜔ℎ −

2𝐵𝑎[𝑑|𝑔|ℎ]𝐵𝑔𝑏𝑐𝜔𝑐 ∧ 𝜔𝑑 ∧ 𝜔ℎ + (𝐴𝑏𝑐
𝑎[𝑑 −

2𝐵𝑎[𝑑|ℎ𝐵ℎ𝑏𝑐) 𝐵𝑐|𝑔𝑓]𝜔𝑑 ∧ 𝜔𝑔 ∧ 𝜔𝑓 = 0.  

     (7.1) 
We expand the restriction of forms Δ𝐴𝑏𝑐

𝑎𝑑 =
𝑑𝐴𝑏𝑐

𝑎𝑑 + 𝐴𝑏𝑐
ℎ𝑑𝜃ℎ

𝑎 + 𝐴𝑏𝑐
𝑎ℎ𝜃ℎ

𝑑 − 𝐴ℎ𝑐
𝑎𝑑𝜃𝑏

ℎ − 𝐴𝑏ℎ
𝑎𝑑𝜃𝑐

ℎto W 
in the standard modulus basis Λ1(𝑀): 
Δ𝐴𝑏𝑐

𝑎𝑑 = 𝑑𝐴𝑏𝑐
𝑎𝑑 + 𝐴𝑏𝑐

ℎ𝑑𝜃ℎ
𝑎 + 𝐴𝑏𝑐

𝑎ℎ𝜃ℎ
𝑑 − 𝐴ℎ𝑐

𝑎𝑑𝜃𝑏
ℎ −

𝐴𝑏ℎ
𝑎𝑑𝜃𝑐

ℎ = 𝐴𝑏𝑐𝑔
𝑎𝑑ℎ𝜃ℎ

𝑔
+ 𝐴𝑏𝑐ℎ

𝑎𝑑 𝜔ℎ + 𝐴𝑏𝑐
𝑎𝑑ℎ𝜔ℎ.  (7.2) 

We substitute this relation in (7.1), then we get: 

𝐴𝑏𝑐𝑔
𝑎𝑑ℎ𝜃ℎ

𝑔
∧ 𝜔𝑐 ∧ 𝜔𝑑 + 𝐴𝑏[𝑐ℎ]

𝑎𝑑 𝜔ℎ ∧ 𝜔𝑐 ∧ 𝜔𝑑 +

𝐴𝑏𝑐
𝑎[𝑑ℎ]

𝜔ℎ ∧ 𝜔𝑐 ∧ 𝜔𝑑 − (𝐴𝑏[𝑐
𝑎𝑓

−

2𝐵𝑎𝑓𝑔𝐵𝑔𝑏[𝑐)𝐵|𝑓|𝑑ℎ]𝜔
𝑐 ∧ 𝜔𝑑 ∧ 𝜔ℎ +

2𝐵𝑎ℎ𝑔𝐵𝑔𝑏[𝑐𝑑]𝜔
𝑐 ∧ 𝜔𝑑 ∧ 𝜔ℎ −

2𝐵𝑎[𝑑|𝑔|ℎ]𝐵𝑔𝑏𝑐𝜔𝑐 ∧ 𝜔𝑑 ∧ 𝜔ℎ + (𝐴𝑏𝑐
𝑎[𝑑 −

2𝐵𝑎[𝑑|ℎ𝐵ℎ𝑏𝑐) 𝐵𝑐|𝑔𝑓]𝜔𝑑 ∧ 𝜔𝑔 ∧ 𝜔𝑓 = 0. 

And, taking into account the linear 
independence of the basic forms, we get: 

1) 𝐴𝑏𝑐𝑔
𝑎𝑑ℎ = 0;   2) (𝐴𝑏[𝑐

𝑎𝑓
− 2𝐵𝑎𝑓𝑔𝐵𝑔𝑏[𝑐)𝐵|𝑓|𝑑ℎ] =

0;   3) (𝐴𝑏𝑐
𝑎[𝑑 − 2𝐵𝑎[𝑑|ℎ𝐵ℎ𝑏𝑐) 𝐵𝑐|𝑔𝑓];   4) 𝐴𝑏[𝑐ℎ]

𝑎𝑑 =

2𝐵𝑎𝑑𝑔𝐵𝑔𝑏[𝑐ℎ];   5) 𝐴𝑏𝑐
𝑎[𝑑ℎ]

= 2𝐵𝑎[𝑑|𝑔|ℎ]𝐵𝑔𝑏𝑐. 

 (7.3) 
Performing complex conjugation of the equality 
𝑑𝐴𝑏𝑐

𝑎𝑑 + 𝐴𝑏𝑐
ℎ𝑑𝜃ℎ

𝑎 + 𝐴𝑏𝑐
𝑎ℎ𝜃ℎ

𝑑 − 𝐴ℎ𝑐
𝑎𝑑𝜃𝑏

ℎ − 𝐴𝑏ℎ
𝑎𝑑𝜃𝑐

ℎ =
𝐴𝑏𝑐ℎ

𝑎𝑑 𝜔ℎ + 𝐴𝑏𝑐
𝑎𝑑ℎ𝜔ℎ, taking into account 𝜔𝑎̅̅ ̅̅ =

𝜔𝑎;  𝜃𝑏
𝑎̅̅̅̅ = −𝜃𝑎

𝑏;  𝐵𝑎𝑏𝑐̅̅ ̅̅ ̅̅ = 𝐵𝑎𝑏𝑐both (6.17) and the 
linear independence of the basic forms, we 
obtain that 

𝐴𝑏𝑐
𝑎𝑑ℎ̅̅ ̅̅ ̅̅ = 𝐴𝑎𝑑ℎ

𝑏𝑐 .      
   (7.4) 
By the Main Theorem of tensor analysis and 
relation (6.13), the identity 
𝑑𝐴𝑏𝑐

𝑎𝑑 + 𝐴𝑏𝑐
ℎ𝑑𝜃ℎ

𝑎 + 𝐴𝑏𝑐
𝑎ℎ𝜃ℎ

𝑑 − 𝐴ℎ𝑐
𝑎𝑑𝜃𝑏

ℎ − 𝐴𝑏ℎ
𝑎𝑑𝜃𝑐

ℎ =
𝐴𝑏𝑐ℎ

𝑎𝑑 𝜔ℎ + 𝐴𝑏𝑐
𝑎𝑑ℎ𝜔ℎ,  ( 7.5) 

shows that the system of functions {𝐴𝑏𝑐
𝑎𝑑}on the 

space of the associated G -structure is a system 
of components of some four-valent tensor A on 
the manifold M . Relation (6.17) shows that this 
is a real tensor. It is called the structural tensor 
of the third kind or the holomorphic sectional(in 
short, HS -) curvature tensor of an approximate 
Kähler manifold. 
Wherein 
∇̃ℎ𝐴𝑏𝑐

𝑎𝑑 = 𝐴𝑏𝑐ℎ
𝑎𝑑 ;  ∇̃ℎ̂𝐴𝑏𝑐

𝑎𝑑 = 𝐴𝑏𝑐
𝑎𝑑ℎ .   

  (7.6) 
Due to the oblique symmetry of the system of 
functions {𝐵𝑎𝑐ℎ𝐵ℎ𝑏𝑑𝑓}with respect to the 

indices b and d and the symmetry with respect 
to the indices d and f, we obtain from this that 
the space of the associated G - structure 

𝐵𝑎𝑐ℎ𝐵ℎ𝑏𝑑𝑓 = 0; 𝐵𝑎𝑐ℎ𝐵ℎ𝑏𝑑𝑓 = 𝐵𝑎𝑐ℎ̅̅ ̅̅ ̅̅ 𝐵ℎ𝑏𝑑𝑓
̅̅ ̅̅ ̅̅ ̅ =

𝐵𝑎𝑐ℎ𝐵ℎ𝑏𝑑𝑓
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0.   (7.7). 

This identity is called the first fundamental 
identity. 

Identity 

(𝐴𝑏[𝑐
𝑎𝑑 − 2𝐵𝑎𝑑ℎ𝐵ℎ𝑏[𝑐)𝐵𝑔𝑓]𝑑 = 0,   

   ( 7.8) 
is called the second fundamental identity. 
Let's collapse (7.8) by indices a and b : 
𝐴𝑐

𝑑𝐵𝑔𝑓𝑑 + 𝐴𝑔
𝑑𝐵𝑓𝑐𝑑 + 𝐴𝑓

𝑑𝐵𝑐𝑔𝑑 − 2𝐵𝑐
𝑑𝐵𝑔𝑓𝑑 −

2𝐵𝑔
𝑑𝐵𝑓𝑐𝑑 − 2𝐵𝑓

𝑑𝐵𝑐𝑔𝑑 = 0,   ( 7.9) 

where 𝐴𝑐
𝑑 = 𝐴ℎ𝑐

ℎ𝑐 , 𝐵𝑐
𝑑 = 𝐵𝑔ℎ𝑑𝐵𝑔ℎ𝑐. Now we fold 

(7.8) with respect to the indices a and c and 
rename bto c. Taking into account the symmetry 
properties of objects A and B, we get: 
𝐴𝑐

𝑑𝐵𝑔𝑓𝑑 + 2𝐵𝑐
𝑑𝐵𝑔𝑓𝑑 − 2𝐵𝑔

𝑑𝐵𝑓𝑐𝑑 + 2𝐵𝑓
𝑑𝐵𝑐𝑔𝑑 = 0. 

     (7.10) 
Subtracting (7.10) term by term from (7.9), 
taking into account the symmetry properties of 
the object B, we obtain the identity 

𝐴[𝑔
𝑑 𝐵𝑓]𝑐𝑑 − 2𝐵𝑐

𝑑𝐵𝑔𝑓𝑑 = 0.    

   (7.11). 

The identity 𝐴[𝑔
𝑑 𝐵𝑓]𝑐𝑑 − 2𝐵𝑐

𝑑𝐵𝑔𝑓𝑑 = 0is 

calledthe third fundamental identity. 
 
Conclusion 
So, the complete group of structural equations 
of an approximately Kählerian manifold on the 
space of the associated G - structure has the 
form: 
1) 𝑑𝜔𝑎 = −𝜃𝑏

𝑎 ∧ 𝜔𝑏 + 𝐵𝑎𝑏𝑐𝜔𝑏 ∧ 𝜔𝑐; 
2) 𝑑𝜔𝑎 = 𝜃𝑎

𝑏 ∧ 𝜔𝑏 + 𝐵𝑎𝑏𝑐𝜔𝑏 ∧ 𝜔𝑐; 
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3) 𝑑𝜃𝑏
𝑎 = −𝜃𝑐

𝑎 ∧ 𝜃𝑏
𝑐 + (𝐴𝑏𝑐

𝑎𝑑 − 2𝐵𝑎𝑑ℎ𝐵ℎ𝑏𝑐)𝜔𝑐 ∧

𝜔𝑑; 
4) 𝑑𝐵𝑎𝑏𝑐 + 𝐵𝑑𝑏𝑐𝜃𝑑

𝑎 + 𝐵𝑎𝑑𝑐𝜃𝑑
𝑏 + 𝐵𝑎𝑏𝑑𝜃𝑑

𝑐 =
𝐵𝑎𝑏𝑐𝑑𝜔𝑑; 

5) 𝑑𝐵𝑎𝑏𝑐 ∧ 𝜔𝑏 − 𝐵𝑑𝑏𝑐𝜃𝑎
𝑑 − 𝐵𝑎𝑑𝑐𝜃𝑏

𝑑 −
𝐵𝑎𝑏𝑑𝜃𝑐

𝑑 = 𝐵𝑎𝑏𝑐𝑑𝜔𝑑. 
The fundamental identities of an approximately 
Kählerian manifold on the space of the 
associated G - structure have the form: 
1) 𝐵𝑎𝑐ℎ𝐵ℎ𝑏𝑑𝑓 = 0; 𝐵𝑎𝑐ℎ𝐵ℎ𝑏𝑑𝑓 = 0; 

2) (𝐴𝑏[𝑐
𝑎𝑑 − 2𝐵𝑎𝑑ℎ𝐵ℎ𝑏[𝑐)𝐵𝑔𝑓]𝑑 = 0; 

3) 𝐴[𝑔
𝑑 𝐵𝑓]𝑐𝑑 − 2𝐵𝑐

𝑑𝐵𝑔𝑓𝑑 = 0. 
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