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1. Introduction 
A complex manifold is a manifold with an atlas 
of charts although an almost complex manifold 
is a smooth manifold equipped with a smooth 
linear complex structure on each tangent 
space([6]). Therefore, every complex manifold 
is an almost complex manifold, but there are 
almost complex manifolds that are not complex 
manifolds. Since aKähler manifoldis a 
Riemannian manifold, a complex manifold, and 
a symplectic manifold([1]), a complex manifold 
and an almost complex manifold are 
introductory to Kahlerian manifolds. Hence, 
they are one of the most remarkable 
mathematical objects studied intensively in 

differential geometry and algebraic geometry, 
the theory of Lie groups and homogeneous 
spaces, topology, the theory of differential 
operators, and mathematical physics. Moreover, 
their significance for algebraic geometry 
became clear after the publication of Hodge's 
work ([2]), the results of which were 
subsequently combined. These works 
determined the direction of research on 
Kahlerian manifolds for many years. The flow of 
research into the geometry and topology of 
Kahlerian manifolds continues unabated even in 
our time. 
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Our work is devoted to the study of the 
Nijenhuis tensor of almost complex manifolds 
and is structured as follows.  
In Section 2, we consider complex structures, 
the complexification of a linear space, and 
introduce the concept of linearity extension. We 
give the definition of a complex structure and 
build two bases: RA -basis and A-basis. In 
Section 3, we define an almost complex 
structure and its adjointG-structure. In Section 
4, we define the Nijenhuis tensor of an almost 
complex structure, prove that this tensor is 
defined globally, and obtain an explicit 
expression for this tensor. 

 
2. Complex structures 

2.1 Tensor products of modules 

Let A and B be modules over a commutative 
associative ring K with identity. Consider a free 
abelian group 𝐴 ∘ 𝐵whose set of generators is 
the set of all symbols of the form 𝑎 ∘ 𝑏; 𝑎 ∈
𝐴, 𝑏 ∈ 𝐵. Its elements are all formal (finite) sums 
of such symbols, i.e. type records 𝑎1 ∘ 𝑏1 + ⋯ +
𝑎𝑁 ∘ 𝑏𝑁; 𝑁 ∈ 𝑵. Consider its subgroup 𝑆 ⊂ 𝐴 ∘
𝐵generated by elements of the form (𝑎′ + 𝑎′′) ∘
𝑏 − 𝑎′ ∘ 𝑏 − 𝑎′′ ∘ 𝑏, 𝑎 ∘ (𝑏′ + 𝑏′′) − 𝑎 ∘ 𝑏′ − 𝑎 ∘
𝑏′′, (𝛼𝑎) ∘ 𝑏 − 𝑎 ∘ (𝛼𝑏);  𝛼 ∈ 𝑲. Let's consider an 
abelian group 𝐴 ⊗ 𝐵 = 𝐴 ∘ 𝐵/𝑆. Its elements 
are finite formal sums of symbols of the form 
𝑎 ⊗ 𝑏 = (𝑎 ∘ 𝑏) + 𝑆. It naturally introduces the 
structure of a K - module with an external 
composition operation 𝛼(∑ 𝑎𝑖 ⊗ 𝑏𝑖

𝑛
𝑖=1 ) =

∑ (𝛼𝑎𝑖)
𝑛
𝑖=1 ⊗ 𝑏𝑖(= ∑ 𝑏𝑖

𝑛
𝑖=1 ⊗ (𝛼𝑎𝑖)). This K -

module is called the tensor productK - models A 
and B ([4]). 
Remark 2.1. If A and B have the structure of a 
module over some ring 𝑲1, then  𝐴 ⊗ 𝐵, 
obviously, also has a natural 𝑲1-module 
structure. In particular, if A is an algebra, then it 
𝐴 ⊗ 𝐵has the natural structure of an A - module. 
 
2.2 Complexification of linear space 
 
Let, in particular, 𝐴 = 𝑪be the field of complex 
numbers and 𝐵 = 𝑉be an R -linear space. Then 
the C -linear space ( C-module) 𝑪 ⊗ 𝑉is denoted 
𝑉𝑪and called the complexification of thelinear 
space V. Its elements are records of the form 
∑ 𝑧𝑘⨂𝑋𝑘

𝑁
𝑘=1 ;  𝑧𝑘 ∈ 𝑪, 𝑋𝑘 ∈ 𝑉, 𝑁- an arbitrary 

natural number.The sum of two such elements 

∑ 𝑧𝑘⨂𝑋𝑘
𝑁1
𝑘=1 will ∑ 𝑧𝑝⨂𝑋𝑝

𝑁2
𝑝=1 be a record of the 

form ∑ 𝑧𝑘⨂𝑋𝑘
𝑁1
𝑘=1 + ∑ 𝑧𝑝⨂𝑋𝑝

𝑁2
𝑝=1 , and the 

product element ∑ 𝑧𝑘⨂𝑋𝑘
𝑁1
𝑘=1 to a complex 

number 𝑧 ∈ 𝑪- a record of the form 

∑ (𝑧𝑧𝑘)⨂𝑋𝑘
𝑁1
𝑘=1 . 

In a C -linear space,𝑉𝑪the mapping is 
canonically defined 𝜏: 𝑉𝑪 → 𝑉𝑪, acting 

according to the formula 𝜏(∑ 𝑧𝑘⨂𝑋𝑘
𝑁1
𝑘=1 ) =

∑ 𝑧𝑘̅̅̅⨂𝑋𝑘
𝑁1
𝑘=1 , where 𝑧 → 𝑧i̅s the usual complex 

conjugation in the field of complex numbers. It 
is directly verified that τ is an involutive 
antiautomorphism of a C -linear space 𝑉𝑪, i.e., 
bijection with the properties 
1) 𝜏2 = 𝑖𝑑; 2) 𝜏(𝑋 + 𝑌) = 𝜏(𝑋) +
𝜏(𝑌);  3) 𝜏(𝑧𝑋) = 𝑧̅𝜏(𝑋); 𝑧 ∈ 𝑪, 𝑋, 𝑌 ∈ 𝑉,(2.1) 
is called the complex conjugation operator. 
Note that V naturally admits an embedding j in 
𝑉𝑪by identifying 𝑋 ≡ 𝑗(𝑋) = 1⨂𝑋; 𝑋 ∈ 𝑉. At the 
same time 𝜏(𝑋) ≡ 𝜏(1⨂𝑋) = 1⨂𝑋 ≡ 𝑋. 

Moreover, 𝜏(∑ 𝑧𝑘⨂𝑋𝑘
𝑁1
𝑘=1 ) = ∑ 𝑧𝑘⨂𝑋𝑘

𝑁1
𝑘=1 ⇔

𝑧𝑘 = 𝑧𝑘̅̅̅(𝑘 = 1, … , 𝑁) ⇔ 𝑧𝑘 = 𝑥𝑘 ∈ 𝑹, which 

means ∑ 𝑧𝑘⨂𝑋𝑘
𝑁1
𝑘=1 = ∑ 𝑥𝑘(1⨂𝑋𝑘)𝑁1

𝑘=1 ≡

∑ 𝑥𝑘𝑋𝑘
𝑁1
𝑘=1 ∈ 𝑉. This proves 

 

Proposition 2.1. Let 𝑌 = ∑ 𝑧𝑘⨂𝑋𝑘
𝑁1
𝑘=1 ∈ 𝑉𝑪. 

Then, taking into account the accepted 
identification, 𝑌 ∈ 𝑉 ⇔ 𝜏(𝑌) = 𝑌. 
 
Note that if V is an n-dimensional R -linear 
space, then 𝑉𝑪is an n-dimensional C -linear 
space. Moreover, if 𝑏 = {𝑒1, … , 𝑒𝑛}is a basis of R 
-linear space V, then under the above canonical 
identification of elements 𝑒𝑘 ∈ 𝑉with elements, 
the 1 ⊗ 𝑒𝑘 ∈ 𝑉𝑪set b is also a basis of C -linear 
space 𝑉𝑪. This easily follows from a more 
general fact of independent interest ([4, p. 
171]): 
 
Proposition 2.2. Let be {𝑒1, … , 𝑒𝑛}a basis of a 
real linear space V,{𝜀1, … , 𝜀𝑛}be a basis of an R -
linear spaceW. Then {𝑒𝑖 ⊗ 𝜀𝑎|𝑖 = 1, … , 𝑛; 𝑎 =
1, … , 𝑚}is a basis of the R -linear space 𝑉⨂𝑊.
  
 
Indeed, from this Proposition, it follows that the 

elements {1 ⊗ 𝑒𝑘, √−1 ⊗ 𝑒𝑘|𝑘 = 1, … , 𝑛}form a 
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basis of an R -linear space 𝑉𝑪, from which it 
already easily follows that the first n elements of 
this are basis form a basis 𝑉𝑪as a C -linear space. 
 
Any operator 𝑓: 𝑉 → 𝑉canonically defines a C -
linear mapping 𝑓𝑪 = 𝑖𝑑 ⊗ 𝑓: 𝑉𝑪 → 𝑉𝑪by the 
formula 𝑓𝑪(∑ 𝑧𝑘 ⊗ 𝑋𝑘

𝑁
𝑘=1 ) = ∑ 𝑧𝑘 ⊗ 𝑓(𝑋𝑘)𝑁

𝑘=1 . 
Obviously, taking into account the indicated 

identification, 𝑓𝑪|
𝑁

= 𝑓, because of which the 

mapping 𝑓𝑪is called the extension in the 
linearityof the operator f. 
 
Proposition 2.3. AC -linear operator 𝐹: 𝑉𝑪 →
𝑉𝑪is a linear extension of some R -linear 
operator 𝑓: 𝑉 → 𝑉if and only if 𝜏 ∘ 𝐹 = 𝐹 ∘ 𝜏. 
 
Proof. Indeed, if 𝐹 = 𝑓𝑪, then 𝜏 ∘ 𝐹(∑ 𝑧𝑘 ⊗𝑁

𝑘=1

𝑋𝑘) = ∑ 𝑧𝑘̅̅̅ ⊗ 𝑓(𝑋𝑘)𝑁
𝑘=1 = 𝐹 ∘ 𝜏(∑ 𝑧𝑘 ⊗ 𝑋𝑘

𝑁
𝑘=1 ), 

whence it follows that 𝜏 ∘ 𝐹 = 𝐹 ∘ 𝜏. Conversely, 
if this relation holds, then 𝜏 ∘ 𝐹(1 ⊗ 𝑋) = 𝐹 ∘
𝜏(1 ⊗ 𝑋) = 𝐹(1 ⊗ 𝑋), 𝑋 ∈ 𝑉, and, by 
Proposition 2.1, the restriction 𝑓 = 𝐹|𝑉of the 
operator F to V is defined by theformula 1 ⊗
𝑓(𝑋) = 𝐹(1 ⊗ 𝑋). Obviously, in this 
case,𝐹(∑ 𝑧𝑘 ⊗ 𝑋𝑘

𝑁
𝑘=1 ) = ∑ 𝐹(𝑧𝑘 ⊗ 𝑋𝑘)𝑁

𝑘=1 =
∑ 𝑧𝑘𝐹(1 ⊗ 𝑋𝑘)𝑁

𝑘=1 = ∑ 𝑧𝑘(1 ⊗ 𝑓(𝑋𝑘))𝑁
𝑘=1 =

∑ 𝑧𝑘 ⊗ 𝑓(𝑋𝑘)𝑁
𝑘=1 = 𝑓𝑪(∑ 𝑧𝑘 ⊗ 𝑋𝑘

𝑁
𝑘=1 ), and 

hence 𝐹 = 𝑓𝑪.     
 
The following assertion is proved in the same 
way: 
Proposition 2.4. An r -aryC -linear mapping 
𝑇: 𝑉𝑪 × … × 𝑉𝑪 → 𝑉𝑪is a linear extension of an r 
-aryR-linear mapping 𝑇: 𝑉 × … × 𝑉 → 𝑉if and 
only if 𝜏 ∘ 𝑇(𝑋1, … , 𝑋𝑟) =
𝑇(𝜏𝑋1, … , 𝜏𝑋𝑟); 𝑋1, … , 𝑋𝑟 ∈ 𝑉𝑪. 
 
One can give another definition of 
complexification that is equivalent to the above 
one. Let V be an R -linear space. Let us introduce 
the following operations in the set:𝑉 × 𝑉 
1) Addition. If 𝑋1 = (𝐴1, 𝐵1), 𝑋2 = (𝐴2, 𝐵2)are 
elements from 𝑉 × 𝑉, then the pair (𝐴1 +
𝐴2, 𝐵1 + 𝐵2)is called their sum and denoted by 
𝑋1 + 𝑋2. 
2) Multiplication by a complex number. If 𝑋 =

(𝐴, 𝐵) ∈ 𝑉 × 𝑉, 𝑧 = 𝛼 + √−1𝛽 ∈ 𝑪, then put 
𝑧𝑋 = (𝛼𝑎 − 𝛽𝑏, 𝛼𝑏 + 𝛽𝑎).  

Let's call the element𝑋 the product of a complex 
number z and an element Xis directly verified 
that this 𝑉 × 𝑉introduces in the set the 
structure of a C -linear space �̃�𝑪, which is 
naturally isomorphic to the C -linear space𝑉𝑪. 
The natural isomorphism 𝜑: 𝑉𝑪 → �̃�𝑪associates 

an element with ∑ (𝛼𝑘 + √−1𝛽𝑘)𝑋𝑘
𝑁
𝑘=1 ∈ 𝑉𝑪a 

pair (𝐴, 𝐵) ∈ �̃�𝑪, where 𝐴 = ∑ 𝛼𝑘𝑋𝑘
𝑁
𝑘=1 , 𝐵 =

∑ 𝛽𝑘𝑋𝑘
𝑁
𝑘=1 . Under this isomorphism, the 

embedding described above 𝑗: 𝑉 ⊂
𝑉𝑪corresponds to the embedding 𝑗̃: 𝑉 ⊂
�̃�𝑪defined by the formula 𝑗̃(𝑋) = (𝑋, 0); 𝑋 ∈ 𝑉, 
the complex conjugation operator corresponds 
to the operator �̃�: �̃�𝑪 → �̃�𝑪defined by the 
formula �̃�(𝑋, 𝑌) = (𝑋, −𝑌); 𝑋, 𝑌 ∈ 𝑉, and the C -
linear operator corresponds to 𝑓𝑪 = 𝑖𝑑 ⊗ 𝑓the 
C -linear operator 𝑗̃𝑪: �̃�𝑪 ⊂ �̃�𝑪defined by the 
formula 𝑓𝑪(𝑋, 𝑌) = (𝑓𝑋, 𝑓𝑌); 𝑋, 𝑌 ∈ 𝑉. 
 
2.3. Complex structures 
 
Let V be a complex linear space. It can, in 
particular, be viewed as a real linear space 
𝑉𝑹(called the reification of the space V ) in which 
an R -linear endomorphism 𝐽0: 𝑉𝑹 → 𝑉𝑹is given, 

defined by 𝐽0(𝑋) = √−1𝑋; 𝑋 ∈ 𝑉𝑹. This 
endomorphism allows us to completely restore 
the structure of a complex linear space to V. 

Namely, if 𝑧 = 𝛼 + √−1𝛽 ∈ 𝑪, 𝑋 ∈ 𝑉, then 𝑧𝑋 =
𝛼𝑋 + 𝛽𝐽0(𝑋). Moreover, it is obvious that the 
endomorphism 𝐽0is anti-involutive, i.e. 𝐽0

2 =
−𝑖𝑑. 
Definition 2.1. A complex structurein V is an 
endomorphism 𝐽: 𝑉 → 𝑉such that 𝐽2 = −𝑖𝑑. In 
other words, a complex structure is an anti-
involutive automorphism of a real linear space. 
 
Fixing a complex structure in V canonically 
determines in V the structure of a complex 
linear space (that is, a C - module). Indeed, if 𝑋 ∈

𝑉, 𝑧 = 𝛼 + √−1𝛽 ∈ 𝑪, then we set 
𝑧𝑋 = 𝛼𝑋 + 𝛽(𝐽𝑋).     
  (2.2) 
It is directly verified that in this case all 8 axioms 
of a C -linear space are satisfied, which we will 
denote by the same symbol V . Obviously, V as an 
R -linear space is its reification 𝑉𝑹. 

Let the dimension 𝑑𝑖𝑚𝑪𝑉of the linear 
space V as a complex space be equal to n, and let 
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{𝑒1, … , 𝑒𝑛}be the basis of this space. Let 𝑋 ∈ 𝑉. 

Then 𝑋 = 𝑧𝑘𝑒𝑘, where 𝑧𝑘 = 𝛼𝑘 + √−1𝛽𝑘 ∈
𝑪; 𝑘 = 1, … , 𝑛. Taking into account (1.2), 𝑋 =
𝛼𝑘𝑒𝑘 + 𝛽𝑘(𝐽𝑒𝑘), i.e., every vector 𝑋 ∈ 𝑉𝑹is 
represented as a linear combination of vectors 
𝑒1, … , 𝑒𝑛, 𝐽𝑒1, … , 𝐽𝑒𝑛. On the other hand, let 
𝜆𝑘𝑒𝑘 + 𝜇𝑘𝐽𝑒𝑘 = 0, 𝜆𝑘, 𝜇𝑘 ∈ 𝑹.Then, due to (1.2), 

(𝜆𝑘 + √−1𝜇𝑘)𝑒𝑘 = 0, and due to the С -linear 

independence of the vectors 𝑒1, … , 𝑒𝑛, 𝜆𝑘 +

√−1𝜇𝑘 = 0, and hence 𝜆𝑘 = 𝜇𝑘 = 0; 𝑘 = 1, … , 𝑛. 
Therefore, the vectors 
{𝑒1, … , 𝑒𝑛, 𝐽𝑒1, … , 𝐽𝑒𝑛}form a basis for the space 
V as an R -linear space (i.e. a basis for the space 
𝑉𝑹). Such a basis is called a real-adapted 
complex structure, in short, an RA - basis. 
 
Remark 2.2. Obviously, any complex structure 
is defined on the RA basis by a matrix of the form 

(𝐽𝑗
𝑖) = (

0 −𝐼𝑛

𝐼𝑛 0
).     

  (2.3) 
 
As a simple but important corollary, we get the 
following 
Proposition 2.5. A finite-dimensional real 
linear space admits a complex structure if and 
only if it is even-dimensional. 
 
Proof. Since the RA -basis contains an even 
number of vectors, a space that admits a 
complex structure is necessarily even-
dimensional. Conversely, let V be a 2𝑛-
dimensional real linear space. We fix an 
arbitrary basis in it {𝑒1, … , 𝑒2𝑛}. Then the 
endomorphism of the 𝐽space V given by the 
matrix (2.3) on this basis is obviously a complex 
structure.     
  

 
Let 𝐽be a complex structure in an R -

linear space V . Consider the endomorphism 

𝜎: 𝑉𝑪 → 𝑉𝑪defined by the formula 𝜎 =
1

2
(𝑖𝑑 −

√−1𝐽𝑪). Obviously, 𝜎2 = 𝜎, i.e. 𝜎- projector. The 

projector complementary to it 𝜎is determined 

by the formula 𝜎 =
1

2
(𝑖𝑑 + √−1𝐽𝑪). In the 

future, allowing freedom of speech, 𝐽𝑪we will 
simply denote endomorphism 𝐽. Note that 𝐽 ∘

𝜎 =
1

2
(𝐽 + √−1𝑖𝑑) =

√−1

2
(𝑖𝑑 − √−1𝐽) = √−1𝜎, 

which means 𝐼𝑚 𝜎 ⊂ 𝐷𝐽
√−1. (Here and in what 

follows, the symbol 𝐷𝐹
𝜆denotes the proper 

subspace of the endomorphism F corresponding 
to the eigenvalue ). 

Conversely, if 𝑋 ∈ 𝐷𝐽
√−1, then 𝜎𝑋 =

1

2
(𝑋 − √−1𝐽𝑋) =

1

2
(2𝑋) = 𝑋, in particular, 𝑋 ∈

𝐼𝑚 𝜎. Thus, 𝐼𝑚 𝜎 = 𝐷𝐽
√−1. Likewise, 𝐼𝑚 𝜎 =

𝐷𝐽
−√−1. Since 𝒳𝑪(𝑀) = 𝐷𝐽

√−1 ⊕ 𝐷𝐽
−√−1we get: 

 
Theorem 2.1.𝑉𝑪linear spacedecomposes into a 
direct sum of eigenspaces of the endomorphism 

𝐽corresponding to the eigenvalues √−1and 

−√−1, i.e., 𝑉𝑪 = 𝐷𝐽
√−1 ⊕ 𝐷𝐽

−√−1, and the 

endomorphisms 𝜎and 𝜎are projections onto the 

subspaces 𝐷𝐽
√−1and 𝐷𝐽

−√−1, respectively. 

 
Moreover, fair 
Theorem 2.2. Defining a complex structure on 
an R -linear space V is equivalent to splitting 
𝑉𝑪into a direct sum of two complex conjugate 
subspaces serving as proper subspaces of this 
complex structure. 
 
Proof. Necessity follows from Theorem 2.1. Let 
now 𝑉𝑪 = 𝐷 ⊕ 𝜏𝐷. Then ∀𝑋 ∈ 𝑉𝑪 ⟹ 𝑋 = 𝑋1 +
𝑋2;  𝑋1 ∈ 𝐷, 𝑋2 ∈ 𝜏𝐷. We construct an 
endomorphism 𝒥: 𝑉𝑪 ⟶ 𝑉𝑪by setting 𝒥(𝑋) =

√−1(𝑋1 − 𝑋2). Obviously, 𝜏(𝑋) = 𝜏(𝑋1) +
𝜏(𝑋2), and 𝜏(𝑋1) ∈ 𝜏𝐷, 𝜏(𝑋2) ∈ 𝐷. Therefore 

(𝒥 ∘ 𝜏)(𝑋) = √−1(𝜏(𝑋2) − 𝜏(𝑋1)). On the other 

hand, due to the antilinearity of the operator , 

(𝜏 ∘ 𝒥)(𝑋) = −√−1(𝜏(𝑋1) − 𝜏(𝑋2)) =

√−1(𝜏𝑋2 − 𝜏𝑋1). Thus, 𝒥 ∘ 𝜏 = 𝜏 ∘ 𝒥. By 
Proposition 2.3 𝒥 = 𝐽𝑪, for some R -linear 
endomorphism 𝐽: 𝑉 → 𝑉. Obviously, 𝒥2 = −𝑖𝑑, 
in particular, 𝐽2 = −𝑖𝑑, i.e. 𝐽is the complex 
structure on 𝑉. If 𝑋 ∈ 𝐷, then 𝑋 = 𝑋1, which 

means 𝒥(𝑋) = √−1𝑋1 = √−1𝑋. Therefore, 𝐷 ⊂

𝐷𝐽
√−1. Conversely, if 𝑋 ∈ 𝐷𝐽

√−1, then √−1(𝑋1 −

𝑋2) = 𝒥(𝑋) = √−1𝑋 = √−1(𝑋1 + 𝑋2), whence 

𝑋2 = 0, and hence 𝑋 ∈ 𝐷. Therefore, 𝐷𝐽
√−1 ⊂ 𝐷, 

i.e. 𝐷𝐽
√−1 = 𝐷. Likewise, 𝐷𝐽

−√−1 = 𝜏𝐷. 
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Lemma 2.1. In the introduced notation, 1) 𝜏 ∘
𝜎 = 𝜎 ∘ 𝜏, 2) 𝜏 ∘ 𝜎 = 𝜎 ∘ 𝜏. 
 
Proof. Taking into account the antilinearity of 
the mapping and using Proposition 2.3, we 

have: 𝜏 ∘ 𝜎(𝑋) =
1

2
𝜏(𝑋 − √−1𝐽𝑋) =

1

2
(𝜏𝑋 +

√−1𝜏 ∘ 𝐽𝑋) =
1

2
(𝜏𝑋 + √−1𝐽 ∘ 𝜏𝑋) = 𝜎 ∘

𝜏(𝑋); 𝑋 ∈ 𝑉𝑪. 
The second relation is proved similarly. 
      
  
 

Theorem 2.3. The mappings 𝜎|𝑉: 𝑉 → 𝐷𝐽
√−1and 

𝜎|𝑉: 𝑉 → 𝐷𝐽
−√−1are, respectively, an 

isomorphism and an anti-isomorphism of C -
linear spaces. 
 
Proof. The additivity of the mappings 𝜎|𝑉and 

𝜎|𝑉is obvious. Let now 𝑧 = 𝛼 + √−1𝛽 ∈ 𝑪, 𝑋 ∈

𝑉. As already seen, 𝜎 ∘ 𝐽 = 𝐽 ∘ 𝜎 = √−1𝜎, 𝜎 ∘ 𝐽 =

𝐽 ∘ 𝜎 = −√−1𝜎. Therefore 𝜎(𝑧𝑋) = 𝜎(𝛼𝑋 +

𝛽𝐽𝑋) = 𝛼𝜎𝑋 + 𝛽√−1𝜎𝑋 = 𝑧(𝜎𝑋). Similarly, 
𝜎(𝑧𝑋) = 𝑧̅(�̅�𝑋), and thus the maps 𝜎|𝑉and 
𝜎|𝑉are, respectively, a homomorphism and an 
antihomomorphism of C -linear spaces. 

Let ∃𝑋 ∈ 𝑉and 𝜎𝑋 = 0. Applying the 
operator to both parts of this identity , taking 
into account Lemma 2.1 and Proposition 2.1, we 
obtain that 𝜎𝑋 = 0, and hence 𝑋 = 𝜎𝑋 + 𝜎𝑋 =
0. Therefore, ker𝜎|𝑉 = {0}. Similarly, ker𝜎|𝑉 =
{0}, i.e. 𝜎and 𝜎are monomorphism and 
antimonomorphism, respectively. 

Let, finally 𝑋 ∈ 𝐷𝐽
√−1. Consider the vector 

𝑌 = 𝑋 + 𝜏𝑋. By Proposition 2.1, 𝑌 ∈ 𝑉. On the 
other hand, since, 𝑋 ∈ 𝐼𝑚 𝜎 = ker 𝜎taking into 
account Lemma 2.1, we have: 𝜎𝑌 = 𝜎𝑋 + (𝜏 ∘
𝜎)𝑋 = 𝑋 + (𝜏 ∘ 𝜎)𝑋 = 𝑋. Similarly, if 𝑋 ∈

𝐷𝐽
−√−1, then 𝜎𝑌 = 𝑋, and, thus, 𝜎|𝑉and 𝜎|𝑉are an 

epimorphism and an anti-epimorphism, 
respectively.     
  
 
Let, in particular, V be a real R -linear space, 
dim 𝑉 = 2𝑛, and let 𝑏 = {𝑒1, … , 𝑒2𝑛}be its basis 
as a C -module. Consider a system of vectors 
𝑏𝐴 = {𝜀1, … , 𝜀𝑛, 𝜀1̂, … , 𝜀�̂�}, where 𝜀𝑎 =
𝜎(𝑒𝑎), 𝜀�̂� = 𝜎(𝑒𝑎); 𝑎 = 1, … , 𝑛. By Theorem 2.3, 

the vectors {𝜀1, … , 𝜀𝑛}form the basis of the C -

linear space 𝐷𝐽
√−1, and the vectors 

{𝜀1̂, … , 𝜀�̂�}form the basis of the C -linear space 

𝐷𝐽
−√−1, and, by Lemma 2.1 and Proposition 2.1, 

𝜏𝜀𝑎 = (𝜏 ∘ 𝜎)𝑒𝑎 = (�̅� ∘ 𝜏)𝑒𝑎 = 𝜎𝑒𝑎 = 𝜀�̂�. 
Moreover, by Theorem 2.1, the system of 
vectors 𝑏𝐴forms a basis of the space 𝑉𝑪, which is 
characterized by the fact that the 
endomorphism matrix 𝐽in this basis has the 
form 

(𝐽𝑗
𝑖) = (

√−1𝐼𝑛 0

0 −√−1𝐼𝑛

),   

    (2.4) 
Such a basis is called an adapted complex 
structure, in short A-basis. 
 
Conclusion. Fixing a complex structure 𝐽in a 
2𝑛-dimensional real linear space 𝑉𝑹induces the 
assignment of 𝑉𝑹an n-dimensional complex 
linear space V to the structures. Each basis 𝑏 =
{𝑒1, … , 𝑒2𝑛}of the space V canonically induces 
two bases: 
1) RA is the basis 𝑏𝑅𝐴 = {𝑒1, … , 𝑒𝑛, 𝐽𝑒1, … , 𝐽𝑒𝑛}of 
the space 𝑉𝑹. Of course, taking into account the 
canonical identification, 𝑋 ≡ 1 ⊗ 𝑋this basis 
can also be considered as the basis of the C -
linear space (𝑉𝑹)𝑪. 
2) A -basis𝑏𝐴 = {𝜀1, … , 𝜀𝑛, 𝜀1̂, … , 𝜀�̂�}C -linear 
space (𝑉𝑹)𝑪. 

 
Now let 𝑏 = {𝑒1, … , 𝑒𝑛}and �̃� =

{�̃�1, … , �̂�𝑛}be two bases of the space V,𝐶 = 𝐶𝑏�̃� =
(𝑐𝑏

𝑎)be the transition matrix from basis 𝑏to basis 

�̃�, 𝐶 = 𝐴 + √−1𝐵, where 𝐴 = (𝛼𝑏
𝑎)and 𝐵 =

(𝛽𝑏
𝑎)are the real and imaginary parts of matrix 

C, respectively. Since, taking into account (1.2), 
�̃�𝑎 = 𝑐𝑎

𝑏𝑒𝑏 = 𝛼𝑎
𝑏𝑒𝑏 + 𝛽𝑎

𝑏(𝐽𝑒𝑏), we have: 𝐽�̃�𝑎 =
𝛼𝑎

𝑏𝐽𝑒𝑏 + 𝛽𝑎
𝑏𝐽2𝑒𝑏 = −𝛽𝑎

𝑏𝑒𝑏 + 𝛼𝑎
𝑏𝐽𝑒𝑏, which 

means that 

𝐶𝑏𝑅𝐴�̃�𝑅𝐴
= (

𝐴 −𝐵
𝐵 𝐴

).    

   (2.5) 
Next, 𝜀�̃� = 𝜎(�̃�𝑎) = 𝜎(𝑐𝑎

𝑏𝑒𝑏) = 𝑐𝑎
𝑏𝜎(𝑒𝑏) =

𝑐𝑎
𝑏𝜀𝑏;  𝜀�̂̃� = 𝜎(�̃�𝑎) = 𝜎(𝑐𝑎

𝑏𝑒𝑏) = 𝑐�̅�
𝑏�̅�(𝑒𝑏) = 𝑐�̅�

𝑏𝜀�̂�, 
which means 

𝐶𝑏𝑎�̃�𝐴
= (

𝐶 0
0 𝐶̅).     

   (2.6) 
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Obviously, both matrices, 𝐶𝑏𝑅𝐴�̃�𝑅𝐴
and 𝐶𝑏𝑎�̃�𝐴

, can 

be treated as matrices of the same linear space 
endomorphism, (𝑉𝑹)𝑪namely, the 
endomorphism 𝑓𝑪, where 𝑓is the space 
endomorphism 𝑉𝑹, considered as an 
endomorphism of the space V, transforming the 
basis b into the basis �̃�. In particular, 

det (
𝐴 −𝐵
𝐵 𝐴

) = det (
𝐶 0
0 𝐶̅) = |det 𝐶|2.  

   (2.7) 
An important consequence of this relation is 
Proposition 2.6. Fixing a complex structure in 
an R -linear space 𝑉𝑹canonically determines the 
orientation of this space. It consists of bases 
oriented in the same way as any RA -basis.
  
 
3. Almost complex structures and the 
associated G - structure 
 
Definition 3.1. An almost complex structureon a 
manifold M is an anti-involutive endomorphism 
of a module 𝒳(𝑀), i.e. 𝐶∞(𝑀)-linear mapping 
𝐽: 𝒳(𝑀) → 𝒳(𝑀)such that 𝐽2 = −𝑖𝑑. An 
endomorphism 𝐽is also called a structural 
endomorphism. A manifold on which an almost 
complex structure is fixed is called an almost 
complex manifold. A diffeomorphism of an 
𝑓: 𝑀1 → 𝑀2almost complex manifold 
(𝑀1, 𝐽1)onto an almost complex manifold 
(𝑀2, 𝐽2)is called a holomorphic diffeomorphism 
if 𝑓∗ ∘ 𝐽1 = 𝐽2 ∘ 𝑓∗. 
 
It is obvious that an almost complex structure 
can be considered as a complex structure of the 
module 𝒳(𝑀), considered as an R -linear space. 
As we have seen, the structure of a C -linear 
space is naturally induced on this linear space, 
and hence the structure of a 𝑪 ⊗ 𝐶∞(𝑀)-
module, i.e., module over the ring of smooth 
complex-valued functions on the manifold M . 
The smoothness of such a function is 
understood as the smoothness of its real and 
imaginary parts. For a better understanding of 
this structure, it is convenient to use the 
alternative definition 𝑪 ⊗ 𝐶∞(𝑀)as a 
complexification of an R -linear space 𝐶∞(𝑀), 
according to 𝑪 ⊗ 𝐶∞(𝑀) = 𝐶∞(𝑀) × 𝐶∞(𝑀). If 

(𝑓, 𝑔) = 𝑓 + √−1𝑔 ∈ 𝑪 ⊗ 𝐶∞(𝑀), 𝑋 ∈ 𝒳(𝑀), 

then by definition (𝑓 + √−1𝑔)𝑋 = 𝑓𝑋 + 𝑔(𝐽𝑋). 

Let be 𝐽an almost complex structure on 
the manifold M . It induces complex structures 
𝐽𝑚: 𝑇𝑚(𝑀) → 𝑇𝑚(𝑀)at every point 𝑚 ∈ 𝑀. In 
view of Proposition 2.5, the space 𝑇𝑚(𝑀), and 
hence the manifold M itself, are even-
dimensional. Let dim 𝑀 = 2𝑛. The number n is 
called the complex dimension ofthe manifold M. 
 
Theorem 3.1. Specifying an almost complex 
structure on a smooth manifold 𝑀2𝑛is 
equivalent to specifying a G -structure on this 
manifold with the structure group 𝐺 =
𝐺𝐿𝑅(𝑛, 𝑪). 
 
Proof. Let be 𝐽an almost complex structure on 
the manifold M. Then, at each point 𝑚 ∈ 𝑀, a 
family of ℛ𝑚frames of the space is defined 
𝑇𝑚(𝑀), which is considered as an n-dimensional 
C -linear space. It follows from the definition of 
a frame that a group 𝐺𝐿(𝑛, 𝑪)acts in each such 
family freely and transitively. 
 
Lemma 3.1. In some neighborhood U of an 
arbitrary point 𝑚 ∈ 𝑀, one can construct a 
family of vector fields {𝑒1

0, … , 𝑒𝑛
0}on U that form 

the basis of a module 𝒳(𝑈)as a 𝑪 ⊗ 𝐶∞(𝑈)-
module. 
 
Proof. We fixsome RA - frame 𝑝 =
{𝜉1, … , 𝜉𝑛, 𝐽𝑚𝜉1, … , 𝐽𝑚𝜉𝑛}at the point m. As we 
know, a system of vectors 𝜉𝑘can be extended to 
a system of vector fields 𝑒𝑘

0(𝑘 = 1, … , 𝑛)on M . In 
this case, the system of vectors 𝐽𝑚𝜉𝑘will 
continue to the system of vector fields 𝐽𝑒𝑘

0. Since 
the linear independence of the vectors of the 
frame p is equivalent to the inequality zero of 
the determinant of the transition matrix from 
the natural basis at the point m to the basic part 
of the frame p, this property is preserved in 
some neighborhood U of the point m and for 
some vector fields {𝑒1

0, … , 𝑒𝑛
0, 𝐽𝑒1

0, … , 𝐽𝑒𝑛
0}. But 

then, obviously, the system {𝑒1
0, … , 𝑒𝑛

0}of vector 
fields on U will be 𝑪 ⊗ 𝐶∞(𝑈)-linearly 
independent, and hence forms a basis of the 𝑪 ⊗
𝐶∞(𝑈)-module 𝒳(𝑈).  
 
We continue the proof of Theorem 3.1. Let us 
denote ℛ = ⋃ ℛ𝑚𝑚∈𝑀 , and introduce the 
natural projection 𝜋: ℛ → 𝑀that assigns the 
vertex to the frame 𝑝 ∈ ℛ. Now we can construct 
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the mapping 𝐹𝑈: 𝜋−1(𝑈) → 𝐺𝐿(𝑛, 𝑪)by setting 
𝐹𝑈(𝑝) = 𝑔, where 𝑔is the transition matrix from 
the frame (𝑚, 𝑒1

0|𝑚, … , 𝑒𝑛
0|𝑚)to the frame p. It is 

easy to verify that the quadruple 𝐵𝐽(𝑀) =

(ℛ, 𝑀, 𝜋, 𝐺 = 𝐺𝐿(𝑛, 𝑪))forms a principal 

bundle. This principal bundle can be considered 
as a G - structure with respect to the 

monomorphism(𝑓, �̃�)of the principal bundle 

𝐵𝐽(𝑀)into the principal bundle 𝐵(𝑀), where 

𝑓: ℛ → 𝐵𝑀is the map that associates the 
(𝑚, 𝑒1, … , 𝑒𝑛)space frame 𝑇𝑚(𝑀)as a C - module 
with the corresponding RA -frame, and 
�̃�: 𝐺𝐿(𝑛, 𝑪) → 𝐺𝐿(2𝑛, 𝑹)is the canonical Lie 
group monomorphism that associates the 

matrix with 𝐶 = 𝐴 + √−1𝐵 ∈ 𝐺𝐿(𝑛, 𝑪)the 

matrix �̃�(𝐶) = (
𝐴 −𝐵
𝐵 𝐴

)whose image is the Lie 

group 𝐺𝐿𝑹(𝑛, 𝑪). 
Conversely, let be (ℛ, 𝑀, 𝜋, 𝐺𝐿𝑅(𝑛, 𝑪))a G 

-structure of this type on M . Let be 𝐽0a standard 
complex structure in the space 𝑹2𝑛given by a 
matrix of the form (2.3). Let be 𝑚 ∈ 𝑀an 
arbitrary point. We define an endomorphism 
𝐽𝑚in space by the 𝑇𝑚(𝑀)formula 𝐽𝑚 = 𝑝 ∘ 𝐽0 ∘
𝑝−1; 𝑝 ∈ 𝜋−1(𝑚). Obviously, 𝐽𝑚

2 = −𝑖𝑑, i.e. 𝐽𝑚is 
the complex structure on 𝑇𝑚(𝑀). Let us show 
that it is well defined in the sense of being 
independent of the choice of the element 𝑝 ∈
𝜋−1(𝑚). Indeed, if 𝑝 ∈ 𝜋−1(𝑚)is another such 
element, then ∃ℎ ∈ 𝐺𝐿𝑅(𝑛, 𝑪)and 𝑝 = 𝑝ℎ. 
Therefore, 𝑝 ∘ 𝐽0 ∘ 𝑝−1 = (𝑝ℎ) ∘ 𝐽0 ∘ (𝑝ℎ)−1 =
𝑝 ∘ (ℎ ∘ 𝐽0 ∘ ℎ−1) ∘ 𝑝−1 = 𝑝 ∘ 𝐽0 ∘ 𝑝−1 = 𝐽𝑚since 
the group 𝐺𝐿𝑅(𝑛, 𝑪)is obviously an 
endomorphism invariance group 𝐽0, i.e., ℎ𝐽0 =
𝐽0ℎ; ℎ ∈ 𝐺𝐿𝑹(𝑛, 𝑪), which is checked directly. 

Let us show that the family of tensors 𝐽 =
{𝐽𝑚|𝑚 ∈ 𝑀}defines a tensor field on the 
manifold M . To do this, it suffices to prove that 
for any admissible map (𝑈, 𝜑)on M the functions 

𝑚 → 𝐽𝑗
𝑖(𝑚) = 𝑑𝑥𝑖 (𝐽𝑚 (

𝜕

𝜕𝑥𝑗|
𝑚

)) , 𝑚 ∈ 𝑀, are 

smooth on U . Let us fix a local section 𝑠: 𝑈 →
ℛof the space of the G -structure. Then, by 
construction, in the RA -frame 𝜎(𝑚)(and dual-

coreframe) we have: (𝑒𝑖 (𝐽𝑚(𝑒𝑗))) =

(
0 −𝐼𝑛

𝐼𝑛 0
) = ((𝐽0)𝑗

𝑖 ). The smoothness of the 

section is expressed in the fact that the 

components of the matrix C of the transition 
from the natural basis of the module 𝒳(𝑈)to the 
RA -basis 𝜎(𝑈)of this module, and hence the 
components of the inverse matrix �̃�, are smooth 

functions. Hence,𝑚 → 𝐽𝑗
𝑖(𝑚) =

𝑑𝑥𝑖 (𝐽𝑚 (
𝜕

𝜕𝑥𝑗|
𝑚

)) = 

= 𝐶𝑘
𝑖 (𝑚)𝑒𝑘 (𝐽𝑚(�̃�𝑗

𝑟(𝑚)𝑒𝑟)) =

𝐶𝑘
𝑖 (𝑚)�̃�𝑗

𝑟(𝑚)𝑒𝑘(𝐽𝑚(𝑒𝑟)) =

𝐶𝑘
𝑖 (𝑚)�̃�𝑗

𝑟(𝑚)(𝐽0)𝑟
𝑘are smooth functions on U . 

Thus, 𝐽is an almost complex structure. 
Obviously, the family of RA -frames generated 
by it coincides with the space of the G -structure.
      
 
Theorem 3.2. Every almost complex manifold 
is even-dimensional and orientable. 
Proof. The even-dimensionality of an almost 
complex manifold (𝑀2𝑛, 𝐽)follows from 
Proposition 2.5 applied to any linear space of 
the form 𝑇𝑚(𝑀); 𝑚 ∈ 𝑀. The orientability of this 
manifold, by definition, means the existence on 
it of a differential -form 𝜏that does not vanish 
anywhere 2𝑛. But its existence is obvious for 
any neighborhood of local triviality of the 
bundle 𝐵𝐽(𝑀). Indeed, if U is such a 

neighborhood, 𝑠: 𝑈 → ℛis a section of this 
bundle over it, given by vector fields 
{𝑒1, … , 𝑒𝑛, 𝐽𝑒1, … , 𝐽𝑒𝑛}, then, by Proposition 2.6, 
it suffices to set 𝜏𝑈 = 𝑒1 ∧ … ∧ 𝑒𝑛 ∧ 𝐽∗𝑒1 ∧ … ∧
𝐽∗𝑒𝑛, where 𝐽∗(𝑢)(𝑋) = 𝑢(𝐽𝑋); 𝑋 ∈ 𝒳(𝑈), 𝑢 ∈
𝒳∗(𝑈). Let now {𝜓𝛼}𝛼∈𝐴be a partition of unity 
subject to the covering of the 𝔘 =
{𝑈𝛼}𝛼∈𝐴manifold M by the local triviality 
domains of the bundle 𝐵𝐽(𝑀). Since the 

manifold is paracompact, this cover can be 
considered locally finite without loss of 
generality. Let be 𝜏𝛼the 2𝑛-form constructed for 
the domain 𝑈𝛼;  𝛼 ∈ 𝐴. Then 𝜏 = ∑ 𝜓𝛼𝜏𝛼𝛼∈𝐴 is a 
well-defined 2𝑛-form on M . Indeed, due to the 
local finiteness of the cover 𝔘in some 
neighborhood U of each point, the 𝑚 ∈ 𝑀form 
𝜏|𝑈is the sum of at most a finite number of 
smooth forms (𝜏𝛼)|𝑈, and hence is a nowhere 
vanishing 2𝑛form on M.  
Remark 3.1. The even-dimensionality and 
orientability of a manifold are thus necessary 
conditions for the existence of an almost 



Volume 7| June 2022                                                                                                                                             ISSN: 2795-7667 

 

Eurasian Journal of Physics, Chemistry and Mathematics                                                                www.geniusjournals.org 
P a g e  | 108 

complex structure on this manifold. However, 
these conditions are not sufficient. For example, 
a well-known deep result of a topological nature 
is the assertion that an 2𝑛-dimensional sphere 
𝑆2𝑛admits an almost complex structure if and 
only if 𝑛 = 1either 𝑛 = 3(see [5]). Therefore, for 
example, a 4-dimensional sphere, being, as is 
well known, an even-dimensional orientable 
manifold, does not admit an almost complex 
structure. The question of finding necessary and 
sufficient conditions for the existence of an 
almost complex structure on a smooth manifold 
is still open. 
 
Remark 3.2. Along with the principal bundle of 
VM frames over a smooth manifold 𝑀𝑛, we can 
consider a more extensive principal bundle of 
complex frames over M, which we denote 

𝐵𝑪(𝑀) = (𝐵𝑪𝑀, 𝑀, 𝜋, 𝐺𝐿(𝑛, 𝑪))by, where 

𝐵𝑪𝑀is the union of all frames of the spaces 

(𝑇𝑚(𝑀))
𝑪

; 𝑚 ∈ 𝑀. The corresponding 

justifications do not differ in any way from the 
corresponding justifications for the main 
bundle of the WM. This principal bundle plays a 
particularly important role for almost complex 
manifolds (𝑀2𝑛, 𝐽), since it allows, along with 
the G -structure constructed above, to consider 
another 𝐵𝐽(𝑀)defining G -structure 
(𝑚, 𝑒1, … , 𝑒𝑛)defined by the monomorphism 
(𝑓, 𝜌)of 𝑇𝑚(𝑀)the principal bundle 𝐵𝐽(𝑀)into 

the principal bundle 𝐵𝑪𝑀, where 𝑓: ℛ → 𝐵𝑪𝑀A 
is a frame and 𝜌: 𝐺𝐿(𝑛, 𝑪) → 𝐺𝐿(2𝑛, 𝑪)is a 
canonical monomorphism of Lie groups that 
associates a matrix with 𝐶 ∈ 𝐺𝐿(𝑛, 𝑪)a matrix 

𝜌(𝐶) = (
𝐶 0
0 𝐶̅) ∈ 𝐺𝐿(2𝑛, 𝑪). As above, it is 

proved that specifying such a G -structure is 
equivalent to specifying the original almost 
complex structure. This G-structure will be 
especially important for our subsequent 
considerations; we call it a G -structure attached 
to an almost complex structure. 
 
4. Nijenhuis tensor 
4.1 Local definition 
Let be (𝑀, 𝐽)an almost complex manifold, 
𝑑𝑖𝑚 𝑀 = 2𝑛. Let us agree that in what follows 
unless otherwise stated, the indices 
𝑖, 𝑗, 𝑘, . ..range over the values from 1 to 2𝑛, the 

indices 𝑎, 𝑏, 𝑐. 𝑑, . ..range over the values from 1 
to 𝑛. and denote �̂� = 𝑎 + 𝑛. Let be (𝑈, 𝜑)a local 
chart on the manifold M . According to the Main 
Theorem of tensor analysis, the assignment of 
an almost complex structure 𝐽on the manifold M 
induces the assignment on the total space BM of 
a bundle of frames over M of a system of 

functions {𝐽𝑗
𝑖}satisfying in a coordinate 

neighborhood 𝑊 = 𝜋−1(𝑈) ⊂ 𝐵𝑀a system of 
differential equations of the form 

△ 𝐽𝑗
𝑖 ≡ 𝑑𝐽𝑗

𝑖 − 𝐽𝑘
𝑖 𝜔𝑗

𝑘 + 𝐽𝑗
𝑘𝜔𝑘

𝑖 = 𝐽𝑗𝑘
𝑖 𝜔𝑘.  

    ( 4.1) 
We differentiate these relations externally: 

(△ 𝐽𝑗𝑘
𝑖 + 𝐽𝑟

𝑖 𝜔𝑗𝑘
𝑟 − 𝐽𝑗

𝑟𝜔𝑟𝑘
𝑖 ) ∧ 𝜔𝑘 = 0. 

According to Cartan's lemma, 
△ 𝐽𝑗𝑘

𝑖 + 𝐽𝑟
𝑖 𝜔𝑗𝑘

𝑟 − 𝐽𝑗
𝑟𝜔𝑟𝑘

𝑖 = 𝐽𝑗𝑘𝑟
𝑖 𝜔𝑟  

  (4.2) 

for suitable functions 𝐽𝑗𝑘𝑟
𝑖 . Since, by virtue of the 

Corollary to the Generalized Cartan Lemma, 

𝜔𝑗𝑘
𝑖 ≡ 𝜔𝑘𝑗

𝑖 𝑚𝑜𝑑(𝜔1, … , 𝜔𝑛), then alternating 

both parts of (4.2) 
by indices j and k, we get: 

△ (𝐽𝑗𝑘
𝑖 − 𝐽𝑘𝑗

𝑖 ) = −𝐽𝑘
𝑟𝜔𝑟𝑗

𝑖 + 𝐽𝑘
𝑟𝜔𝑟𝑗

𝑖 + 𝐴𝑗𝑘𝑟
𝑖 𝜔𝑟 

for suitable functions 𝐴𝑗𝑘𝑟
𝑖 . Multiply both sides of 

this ratio by 𝐽𝑠
𝑗
and sum over j from 1 to 2𝑛: 

𝐽𝑠
𝑗

△ (𝐽𝑗𝑘
𝑖 − 𝐽𝑘𝑗

𝑖 )

= −𝐽𝑠
𝑗
𝐽𝑘

𝑟𝜔𝑟𝑗
𝑖 + 𝐽𝑠

𝑗
𝐽𝑘

𝑟𝜔𝑟𝑗
𝑖 + 𝐽𝑠

𝑗
𝐴𝑗𝑘𝑟

𝑖 𝜔𝑟 

or,taking into account ( 4.1 ), 

△ {𝐽𝑠
𝑗
(𝐽𝑗𝑘

𝑖 − 𝐽𝑘𝑗
𝑖 )} = −𝜔𝑠𝑘

𝑖 − 𝐽𝑠
𝑗
𝐽𝑘

𝑟𝜔𝑗𝑟
𝑖 + 𝐵𝑠𝑘𝑟

𝑖 𝜔𝑟 

for suitable functions 𝐵𝑠𝑘𝑟
𝑖 . Alternating by 

indices s and k, we finally get: 

△ {𝐽𝑠
𝑗
(𝐽𝑗𝑘

𝑖 − 𝐽𝑘𝑗
𝑖 ) − 𝐽𝑘

𝑗
(𝐽𝑗𝑠

𝑖 − 𝐽𝑠𝑗
𝑖 )} = 𝐶𝑠𝑘𝑟

𝑖 𝜔𝑟 

for suitable functions 𝐶𝑠𝑘𝑟
𝑖 . By virtue of the Main 

Theorem of Tensor Analysis, the set of functions 

𝑁𝑠𝑘
𝑖 =

1

4
{𝐽𝑠

𝑗
(𝐽𝑗𝑘

𝑖 − 𝐽𝑘𝑗
𝑖 ) − 𝐽𝑘

𝑗
(𝐽𝑗𝑠

𝑖 − 𝐽𝑠𝑗
𝑖 )}.  

   (4.3) 
defines in some neighborhood U of an arbitrary 
point of the manifold M a tensor of type (2,1), 
called the Nijenhuis tensor of almost complex 
structure 𝐽. Our immediate task is to prove that 
this tensor is in fact defined globally on M and to 
find an explicit expression for it. To achieve this, 
first of all, we note that, taking into account 
(1.4), relations (4.1) on the space of the 
associated G -structure can be written in the 
form 
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1) 𝜔𝑏
�̂� = −

1

2
𝐽𝑏𝑘

�̂� 𝜔𝑘;   2) 𝜔�̂�
𝑎 =

1

2
𝐽�̂�𝑘

𝑎 𝜔𝑘;   3) 𝐽𝑏𝑘
𝑎 =

0;   4) 𝐽�̂�𝑘
�̂� = 0.  ( 4.4) 

Indeed, putting in (4.1) 𝑖 = 𝑎, 𝑗 = 𝑏, we obtain, 
taking into account (1.4): 

𝑑𝐽𝑏
�̂� − 𝐽𝑐̂

�̂�𝜔𝑏
𝑐̂ + 𝐽𝑏

𝑐𝜔𝑐
�̂� = 𝐽𝑏𝑘

�̂� 𝜔𝑘, 
whence, taking into account (1.4), we obtain 

that 2√−1𝜔𝑏
�̂� = 𝐽𝑏𝑘

�̂� 𝜔𝑘, and hence 𝜔𝑏
�̂� =

−
√−1

2
𝐽𝑏𝑘

�̂� 𝜔𝑘. The rest of the relations are proved 

similarly. 
Taking into account (3.4 1-2 ), we obtain 

that the first group of structural equations of an 
almost complex manifold on the space of the 
associated G -structure can be written in the 
form 

1) 𝑑𝜔𝑎 = −𝜔𝑏
𝑎 ∧ 𝜔𝑏 +

√−1

2
𝐽�̂�𝑐

𝑎 𝜔�̂� ∧ 𝜔𝑐 +

√−1

2
𝐽[�̂�𝑐̂]

𝑎 𝜔�̂� ∧ 𝜔𝑐̂; 

2) 𝑑𝜔�̂� = −𝜔�̂�
�̂� ∧ 𝜔�̂� −

√−1

2
𝐽𝑏𝑐̂

�̂� 𝜔𝑏 ∧ 𝜔𝑐̂ −

√−1

2
𝐽[𝑏𝑐]

�̂� 𝜔𝑏 ∧ 𝜔𝑐.    

 (4.5) 
Further, taking into account (3.3), (1.4), and 
(3.4:3-4), we calculate the components of the 
Nijenhuis tensor in the A-frame (i.e., on the 
space of the associated G - structure): 

𝑁�̂�𝑐̂
𝑎 = √−1𝐽[�̂�𝑐̂]

𝑎 ;   𝑁𝑏𝑐
�̂� = −√−1𝐽[𝑏𝑐]

�̂� .  

    (4.6) 
the other components of this tensor are zero. 

Taking into account (4.6), structural 
equations (4.5) can be written in the form 

1) 𝑑𝜔𝑎 = −𝜔𝑏
𝑎 ∧ 𝜔𝑏 +

1

2
𝑁�̂�𝑐̂

𝑎 𝜔�̂� ∧ 𝜔𝑐̂ +

√−1

2
𝐽�̂�𝑐

𝑎 𝜔�̂� ∧ 𝜔𝑐; 

2)  𝑑𝜔�̂� = −𝜔�̂�
�̂� ∧ 𝜔�̂� −

√−1

2
𝐽𝑏𝑐̂

�̂� 𝜔𝑏 ∧

𝜔𝑐̂ −
1

2
𝑁𝑏𝑐

�̂� 𝜔𝑏 ∧ 𝜔𝑐.   

 (4.7) 
From these relations follows the following 
important 
 
Theorem 4.1.The eigendistributions of an 
almost complex structure J on a smooth 
manifold 𝑀2𝑛are involutive if and only if its 
Nijenhuis tensor vanishes identically. 
Proof. This immediately follows from the fact 

that the eigendistributions𝐷𝐽
√−1and 𝐷𝐽

−√−1are 

given, respectively, by the Pfaffian systems 

𝑠∗(𝜔�̂�) = 0and 𝑠∗(𝜔𝑎) = 0 (𝑎 = 1, … , 𝑛), 

(where s is the local section of the attached G -
structure) by virtue of the definition of the A -
frame, as well as relations (4.7).  
4.2 . Almost complex connections 
Definition 4.1.An almost complex connectionon 
an almost complex manifold (𝑀, 𝐽)is a 
connection in the principal bundle 𝐵𝐽(𝑀). 

By virtue of the existence of a canonical 
monomorphism 

(𝑓, �̃�): 𝐵𝐽(𝑀) → 𝐵(𝑀) 

an almost complex connection induces a path 
connection on M, and by virtue of the existence 
of a canonical monomorphism 
(𝑓, 𝜌): 𝐵𝐽(𝑀) → 𝐵𝐶(𝑀), 

which is an isomorphism onto the image, the 
adjointG -structure, the almost complex 
connection induces connections in these 
principal bundles. All these four connections 
can be identified. In particular, a connection in 
the principal bundle 𝐵𝐶(𝑀)as an almost 
complex connection is characterized by the fact 
that its connection form 𝜃takes values in the Lie 
algebra of the structure group of the adjoint G -
structure, and hence its components satisfy the 
relations 

1) 𝜃𝑏
𝑎̅̅̅̅ = 𝜃�̂�

�̂�;   2) 𝜃𝑏
�̂� = 0;   3) 𝜃�̂�

𝑎 = 0.  

    ( 4.8) 
 
Theorem 4.2. A linear connection ∇on an 
almost complex manifold (𝑀, 𝐽)is an almost 
complex connection if and only if ∇𝐽 = 0. 
Proof. Let be ∇an arbitrary connection on М,𝜃be 
its form on 𝐵𝐶(𝑀). Then, as above, the identities 

∇𝐽𝑗
𝑖 ≡ 𝑑𝐽𝑗

𝑖 − 𝐽𝑘
𝑖 𝜃𝑗

𝑘 + 𝐽𝑗
𝑘𝜃𝑘

𝑖 = 𝐽𝑗,𝑘
𝑖 𝜔𝑘. 

As above, it is shown that in the space of the 
adjointG -structure these identities take the 
form: 

1) 𝜃𝑏
�̂� = −

1

2
𝐽𝑏,𝑘

�̂� 𝜔𝑘;   2) 𝜃�̂�
𝑎 =

1

2
𝐽�̂�,𝑘

𝑎 𝜔𝑘;   3) 𝐽𝑏,𝑘
𝑎 =

0;   4) 𝐽�̂�,𝑘
�̂� = 0.  (4.9) 

Relations (4.6) for the nonzero components of 
the Nijenhuis tensor then take the form: 

𝑁�̂�𝑐̂
𝑎 = √−1𝐽[�̂�,𝑐̂]

𝑎 ;   𝑁𝑏𝑐
�̂� = −√−1𝐽[𝑏,𝑐]

�̂� .  

    (4.10) 
Let now ∇be an almost complex connection. 
Then, due to (4.8), (4.9:1-2), and due to the 
linear independence of the basic forms, we 
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have: ∇𝐽�̂�,𝑘
𝑎 = 0, ∇𝐽𝑏,𝑘

�̂� = 0. In view of (3.9:3-4) 

∇𝐽𝑗,𝑘
𝑖 = 0, i.e. ∇𝐽 = 0. 

Back, let ∇𝐽 = 0. Then, taking into 

account (3.9:1-2), we obtain that 𝜃�̂�
𝑎 = 0, 𝜃𝑏

�̂� =

0. On the other hand, since the connection is real 

∇, it follows that 𝜃𝑏
𝑎̅̅̅̅ = 𝜃�̂�

�̂� . Therefore, 𝜃is a 

connection form with values in the Lie algebra 
of the structure group of the adjointG -structure, 
and, due to the isomorphism of (𝑓, 𝜌)principal 
bundles can be identified with an almost 
complex connection. 
Theorem 4.3.Any torsion-free linear 
connection on an almost complex manifold 
induces an almost complex connection whose 
torsion tensor coincides with the Nijenhuis 
tensor. 
Proof. Let be ∇an arbitrary torsion-free linear 
connection on an almost complex manifold 
(𝑀, 𝐽), and let 𝜃be the form of this connection. 
By virtue of relations (4.9) and (4.10), its first 
group of structural equations on the space of the 
adjointG -structure takes the form: 

1) 𝑑𝜔𝑎 = (−𝜃𝑏
𝑎 ∧ 𝜔𝑏 +

√−1

2
𝐽𝑐̂,𝑏

𝑎 𝜔𝑐̂) ∧ 𝜔𝑏 +
1

2
𝑁�̂�𝑐̂

𝑎 𝜔�̂� ∧ 𝜔𝑐̂; 

2) 𝑑𝜔�̂� = − (𝜃�̂�
�̂� + −

√−1

2
𝐽𝑐,�̂�

�̂� 𝜔𝑐) ∧ 𝜔�̂� +
1

2
𝑁𝑏𝑐

�̂� 𝜔𝑏 ∧ 𝜔𝑐.     

 (4.11) 
Let us introduce into consideration a 1-

form 𝜁with values in the complex complete 
matrix Lie algebra of order 2𝑛by its components 

1) 𝜁𝑏
𝑎 = 𝜃𝑏

𝑎 −
√−1

2
𝐽𝑐̂,𝑏

𝑎 𝜔𝑐̂;  2) 𝜁𝑏
𝑎 = 0;  3) 𝜁�̂�

�̂� =

𝜃�̂�
�̂� +

√−1

2
𝐽𝑐,�̂�

�̂� 𝜔𝑐;  4) 𝜁𝑏
�̂� = 0.  (4.12) 

Obviously, this form takes values in the Lie 
algebra of the structure group of the adjointG -
structure. In addition, externally differentiating 
(4.12:1) on the space of the associated G-
structure, taking into account (4.9:3), we obtain: 

𝑑𝜁𝑏
𝑎 = 𝑑𝜃𝑏

𝑎 −
√−1

2
𝑑𝐽𝑐̂,𝑏

𝑎 ∧ 𝜔𝑐̂ −
√−1

2
𝐽𝑐̂,𝑏

𝑎 𝑑𝜔𝑐̂

= −𝜃𝑐
𝑎 ∧ 𝜃𝑏

𝑐 − 𝜃𝑐̂
𝑎 ∧ 𝜃𝑏

𝑐̂ +
1

2
𝑅𝑏𝑖𝑗

𝑎 𝜔𝑖

∧ 𝜔𝑗

+
√−1

2
{(𝐽ℎ̂,𝑏

𝑎 𝜃𝑐̂
ℎ̂ + 𝐽𝑐̂,ℎ

𝑎 𝜃𝑏
ℎ + 𝐽𝑐̂,ℎ̂

𝑎 𝜃𝑏
ℎ̂

− 𝐽𝑐̂,𝑏
ℎ 𝜃ℎ

𝑎 + 𝐽𝑐̂,�̂�
𝑎 𝜔𝑘) ∧ 𝜔𝑐̂

− 𝐽𝑐̂,𝑏
𝑎 (𝜃ℎ

𝑐̂ ∧ 𝜔ℎ + 𝜃ℎ̂
𝑐̂ ∧ 𝜔ℎ̂)} ≡ 

≡ (𝜁𝑐
𝑎 −

√−1

2
𝐽ℎ̂,𝑐

𝑎 𝜔ℎ̂) ∧ (𝜁𝑏
𝑐 −

√−1

2
𝐽�̂�,𝑏

𝑐 𝜔 �̂�) +

√−1

2
(𝐽ℎ̂,𝑏

𝑎 𝜃𝑐̂
ℎ̂ + 𝐽𝑐̂,ℎ

𝑎 𝜃𝑏
ℎ − 𝐽𝑐̂,𝑏

ℎ 𝜃ℎ
𝑎) ∧ 𝜔𝑐̂ − 𝐽𝑐̂,𝑏

𝑎 𝜃ℎ̂
𝑐̂ ∧

𝜔ℎ̂ ≡ −𝜁𝑐
𝑎 ∧ 𝜁𝑏

𝑐 = −𝜁𝑘
𝑎 ∧ 𝜁𝑏

𝑘(𝑚𝑜𝑑 𝜔𝑖 ∧ 𝜔𝑗). 

Here the symbol " ≡ "is understood as equality 
up to terms of the form 𝑓𝜔𝑖 ∧ 𝜔𝑗; 𝑓 ∈ 𝐶∞(𝐵𝐽

𝐶𝑀). 

Thus, 𝑑𝜁𝑏
𝑎 ≡ −𝜁𝑘

𝑎 ∧ 𝜁𝑏
𝑘(𝑚𝑜𝑑𝜔𝑖 ∧ 𝜔𝑗). Likewise, 

𝑑𝜁�̂�
�̂� ≡ −𝜁𝑘

�̂� ∧ 𝜁�̂�
𝑘(𝑚𝑜𝑑𝜔𝑖 ∧ 𝜔𝑗). Finally, taking 

into account (4.12), 

𝑑𝜁�̂�
𝑎 = 0 − 𝜁𝑐

𝑎 ∧ 𝜁�̂�
𝑐 − 𝜁𝑐̂

𝑎 ∧ 𝜁�̂�
𝑐̂ = −𝜁𝑘

𝑎 ∧ 𝜁�̂�
𝑘 . 

Similarly,  𝑑𝜁𝑏
�̂� = 0 = −𝜁𝑘

�̂� ∧ 𝜁𝑏
𝑘 , and thus 

𝑑𝜁𝑗
𝑖 ≡ −𝜁𝑘

𝑖 ∧ 𝜁𝑗
𝑘(𝑚𝑜𝑑𝜔𝑖 ∧ 𝜔𝑗). 

According to the Kartina-Laptev theorem, 𝜁is a 
connection form. What already. It was noted 
that this form takes values in the Lie algebra of 
the structure group of the adjoint G -structure, 
and hence is an almost complex connection. It 
follows from (4.11) and (4.12) that the torsion 
tensor S of this connection coincides with the 
Nijenhuis tensor.    
Definition 4.2.An almost complex connection 
whose torsion tensor coincides with the 
Nijenhuis tensor will be called semi-canonical. 
 
4.3. Global Definition 
We are now ready to prove that the Nijenhuis 
tensor of an almost complex manifold is defined 
globally and obtain an explicit formula for 
calculating it. First of all, we recall that in the 
space of the associated G -structure 
1) 𝑁𝑎𝑏

𝑐 = 0;   2) 𝑁�̂�𝑏
𝑐 = 0;   3) 𝑁𝑎�̂�

𝑐 = 0;  

    (4.13) 
and complex conjugate formulas (in short, f.c.s.). 
Proposition 3.1. Relations (4.13) are 
equivalent to the following identities: 
1) 𝜎𝑁(𝜎𝑋, 𝜎𝑌) = 0;   2) 𝜎𝑁(�̅�𝑋, 𝜎𝑌) =
0  3) 𝜎𝑁(𝜎𝑋, 𝜎𝑌) = 0; 
andf.c.s., respectively. 
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Proof. Note that for 𝑝 = (𝑚, 𝜀1, … , 𝜀�̂�) ∈ 𝐵𝐽
𝐶𝑀, 

𝑁𝑎𝑏
𝑐 (𝑝) = 0 ⟺ 𝑁(𝜀𝑎, 𝜀𝑏)𝑐𝜀𝑐 = 0 ⟺

 𝜎 (𝑁(𝜎(𝑒𝑎), 𝜎(𝑒𝑏))) = 0, and, since the vectors 

{𝑒1, … , 𝑒𝑛}form the basis of the space 𝑇𝑚(𝑀)as a 

C - module, then  𝜎 (𝑁(𝜎(𝑒𝑎), 𝜎(𝑒𝑏))) = 0 ⟺

 𝜎𝑁(𝜎𝑋, 𝜎𝑌) = 0. 
The rest of the assertions are proved similarly.
      
  
Proposition 4.2.Let be ∇an almost complex 
connection on an almost complex manifold 
(𝑀, 𝐽). Then 
1) ∇𝑋 ∘ 𝜎 = 𝜎 ∘ ∇𝑋;   2) ∇𝑋 ∘ 𝜎 = 𝜎 ∘ ∇𝑋; 𝑋 ∈
𝒳(𝑀). 
Proof. By condition. ∇𝑋𝐽 = 0. So 

2∇𝑋(𝜎𝑌) = ∇𝑋𝑌 − √−1∇𝑋(𝐽𝑌) = ∇𝑋𝑌 −

√−1{∇𝑋(𝐽)𝑌 + 𝐽∇𝑋𝑌} = (𝑖𝑑 − √−1𝐽)∇𝑋𝑌 =

2𝜎(∇𝑋𝑌). 
The second relation is proved similarly. 
      
  
Given these statements, if S is the torsion tensor 
of a semi-canonical connection ∇, then 
𝑁(𝑋, 𝑌) = (𝜎 + 𝜎)𝑁((𝜎 + 𝜎)𝑋, (𝜎 + 𝜎)𝑌) =

𝜎𝑁(𝜎𝑋, 𝜎𝑌) + 𝜎𝑁(𝜎𝑋, 𝜎𝑌) = 𝜎𝑆(𝜎𝑋, 𝜎𝑌) +
𝜎𝑆(𝜎𝑋, 𝜎𝑌) = 𝜎{∇�̅�𝑋(�̅�𝑌) − ∇�̅�𝑌(�̅�𝑋) −
[𝜎𝑋, 𝜎𝑌]} + 𝜎{∇𝜎𝑋(𝜎𝑌) − ∇𝜎𝑌(𝜎𝑋) −
[𝜎𝑋, 𝜎𝑌]} = −𝜎[𝜎𝑋, 𝜎𝑌] − 𝜎[𝜎𝑋, 𝜎𝑌] =

−
1

8
(𝑖𝑑 − √−1𝐽)([𝑋 − √−1𝐽𝑋, 𝑌 − √−1𝐽𝑌]) −

1

8
(𝑖𝑑 + √−1𝐽)([𝑋 − √−1𝐽𝑋, 𝑌 − √−1𝐽𝑌]) =

1

4
{−[𝑋, 𝑌] + [𝐽𝑋, 𝐽𝑌] − 𝐽[𝐽𝑋, 𝑌] − 𝐽[𝑋, 𝐽𝑌]}. 

This proves 
Theorem 4.4. The Nijenhuis tensor of an almost 
complex structure is 𝐽calculated by the formula 

𝑁(𝑋, 𝑌) =
1

4
{−[𝑋, 𝑌] + [𝐽𝑋, 𝐽𝑌] − 𝐽[𝐽𝑋, 𝑌] −

𝐽[𝑋, 𝐽𝑌]}. 
 
Conclusion 
In this paper, we define a complex structure on 
a linear space and prove that a finite-
dimensional real space admits a complex 
structure if and only if it is even-dimensional. It 
is shown that fixing a complex structure 𝐽in a 
2𝑛-dimensional real linear space 𝑉𝑹induces the 
assignment of 𝑉𝑹an n-dimensional complex 
linear space V to the structure. Each basis 𝑏 =

{𝑒1, … , 𝑒2𝑛}of the space V canonically induces 
two bases: 

1) RA is the basis 𝑏𝑅𝐴 =
{𝑒1, … , 𝑒𝑛, 𝐽𝑒1, … , 𝐽𝑒𝑛}of the space 𝑉𝑹. 

2) A -basis𝑏𝐴 = {𝜀1, … , 𝜀𝑛, 𝜀1̂, … , 𝜀�̂�}C -
linear space (𝑉𝑹)𝑪. 
A G -structure attached to an almost complex 
structure is constructed. 
We have given a local definition of the Nijenhuis 
tensor of an almost complex structure 𝐽. It is 
proved that in reality this tensor is defined 
globally on the manifold M and we have found 
an explicit expression for it. 
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