
Volume 7| June 2022                                                                                                                                             ISSN: 2795-7667 

 

Eurasian Journal of Physics, Chemistry and Mathematics                                                               www.geniusjournals.org 
P a g e  | 80 

 
1. Introduction 

Kähler manifolds are one of the most 
remarkable mathematical objects studied 
intensively both in differential geometry and in 
algebraic geometry, the theory of Lie groups and 
homogeneous spaces, topology, the theory of 
differential operators, and mathematical 
physics. Kähler manifolds were first defined in 
1933 by E. Kähler in [1]. Their significance for 
algebraic geometry became clear after the 
publication of Hodge's work, the results of 

which were subsequently combined in the book 
[2]. These works basically determined the 
direction of research on Kahlerian manifolds for 
many years. The flow of research into the 
geometry and topology of Kahlerian manifolds 
continues unabated even in our time. 

Our work is devoted to the study of some 
aspects of the geometry of Kählerian manifolds 
and is structured as follows. In Section 2, we 
consider complex structures, the 
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complexification of a linear space, and introduce 
the concept of linearity extension. 
 
2. Complex structures 
2.1. Tensor products of modules 

Let A and B be modules over a 
commutative associative ring K with identity. 
Consider a free abelian group 𝐴 ∘ 𝐵whose set of 
generators is the set of all symbols of the form 
𝑎 ∘ 𝑏; 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵. Its elements are all formal 
(finite) sums of such symbols, i.e. type records 
𝑎1 ∘ 𝑏1 + ⋯ + 𝑎𝑁 ∘ 𝑏𝑁; 𝑁 ∈ 𝑵. Consider its 
subgroup 𝑆 ⊂ 𝐴 ∘ 𝐵generated by elements of 
the form (𝑎′ + 𝑎′′) ∘ 𝑏 − 𝑎′ ∘ 𝑏 − 𝑎′′ ∘ 𝑏, 𝑎 ∘
(𝑏′ + 𝑏′′) − 𝑎 ∘ 𝑏′ − 𝑎 ∘ 𝑏′′, (𝛼𝑎) ∘ 𝑏 − 𝑎 ∘
(𝛼𝑏);  𝛼 ∈ 𝑲. Let's consider an abelian group 
𝐴 ⊗ 𝐵 = 𝐴 ∘ 𝐵/𝑆. Its elements are finite formal 
sums of symbols of the form 𝑎 ⊗ 𝑏 = (𝑎 ∘ 𝑏) +
𝑆. It naturally introduces the structure of a K - 
module with an external composition operation 
𝛼(∑ 𝑎𝑖 ⊗ 𝑏𝑖

𝑛
𝑖=1 ) = ∑ (𝛼𝑎𝑖)

𝑛
𝑖=1 ⊗ 𝑏𝑖  (= ∑ 𝑏𝑖

𝑛
𝑖=1 ⊗

(𝛼𝑎𝑖)). This K -module is called the tensor 

product K - models A and B [3]. 
Remark 2.1. If A and B have the structure 

of a module over some ring 𝑲1, then  𝐴 ⊗ 𝐵, 
obviously, also has a natural 𝑲1-module 
structure. In particular, if A is an algebra, then it 
𝐴 ⊗ 𝐵has the natural structure of an A - module. 
 
2.2. Complexification of linear space 

Let, in particular, 𝐴 = 𝑪be the field of 
complex numbers and 𝐵 = 𝑉be an R -linear 
space. Then the C -linear space ( C -module) 𝑪 ⊗
𝑉is denoted 𝑉𝑪and called the complexification 
of the linear space V . Its elements are records of 
the form ∑ 𝑧𝑘⨂𝑋𝑘

𝑁
𝑘=1 ;  𝑧𝑘 ∈ 𝑪, 𝑋𝑘 ∈ 𝑉, 𝑁- an 

arbitrary natural number. The sum of two such 

elements ∑ 𝑧𝑘⨂𝑋𝑘
𝑁1
𝑘=1 will ∑ 𝑧𝑝⨂𝑋𝑝

𝑁2
𝑝=1 be a 

record of the form ∑ 𝑧𝑘⨂𝑋𝑘
𝑁1
𝑘=1 + ∑ 𝑧𝑝⨂𝑋𝑝

𝑁2
𝑝=1 , 

and the product element ∑ 𝑧𝑘⨂𝑋𝑘
𝑁1
𝑘=1 to a 

complex number 𝑧 ∈ 𝑪- a record of the form 

∑ (𝑧𝑧𝑘)⨂𝑋𝑘
𝑁1
𝑘=1 . 

In a C -linear space , 𝑉𝑪the mapping is 
canonically defined 𝜏: 𝑉𝑪 → 𝑉𝑪, acting 

according to the formula 𝜏(∑ 𝑧𝑘⨂𝑋𝑘
𝑁1
𝑘=1 ) =

∑ 𝑧𝑘̅̅̅⨂𝑋𝑘
𝑁1
𝑘=1 , where 𝑧 → 𝑧i̅s the usual complex 

conjugation in the field of complex numbers. It 
is directly verified that τ is an involutive anti-

automorphism of a C -linear space 𝑉𝑪, i.e., 
bijection with the properties 
1) 𝜏2 = 𝑖𝑑;  2) 𝜏(𝑋 + 𝑌) = 𝜏(𝑋) +
𝜏(𝑌);  3) 𝜏(𝑧𝑋) = 𝑧̅𝜏(𝑋); 𝑧 ∈ 𝑪, 𝑋, 𝑌 ∈ 𝑉.(2.1) 

It is called the complex conjugation 
operator . 

Note that V naturally admits an 
embedding j in 𝑉𝑪by identifying 𝑋 ≡ 𝑗(𝑋) =
1⨂𝑋; 𝑋 ∈ 𝑉. At the same time 𝜏(𝑋) ≡ 𝜏(1⨂𝑋) =

1⨂𝑋 ≡ 𝑋. Moreover, 𝜏(∑ 𝑧𝑘⨂𝑋𝑘
𝑁1
𝑘=1 ) =

∑ 𝑧𝑘⨂𝑋𝑘
𝑁1
𝑘=1 ⇔ 𝑧𝑘 = 𝑧𝑘̅̅̅ (𝑘 = 1, … , 𝑁) ⇔ 𝑧𝑘 =

𝑥𝑘 ∈ 𝑹, which means ∑ 𝑧𝑘⨂𝑋𝑘
𝑁1
𝑘=1 =

∑ 𝑥𝑘(1⨂𝑋𝑘)𝑁1
𝑘=1 ≡ ∑ 𝑥𝑘𝑋𝑘

𝑁1
𝑘=1 ∈ 𝑉. This proves 

Proposition 2.1. Let 𝑌 = ∑ 𝑧𝑘⨂𝑋𝑘
𝑁1
𝑘=1 ∈

𝑉𝑪. Then, taking into account the accepted 
identification, 𝑌 ∈ 𝑉 ⇔ 𝜏(𝑌) = 𝑌.  
  

Note that if V is an n -dimensional R -
linear space, then V 𝑉𝑪is an n -dimensional C -
linear space. Moreover, if 𝑏 = {𝑒1, … , 𝑒𝑛}is a 
basis of R -linear space V , then under the above 
canonical identification of elements 𝑒𝑘 ∈ 𝑉with 
elements, the 1 ⊗ 𝑒𝑘 ∈ 𝑉𝑪set b is also a basis of 
C -linear space 𝑉𝑪. This easily follows from a 
more general fact of independent interest ([4, p. 
171]): 

Proposition 2.2. Let be {𝑒1, … , 𝑒𝑛}a basis 
of a real linear space V , {𝜀1, … , 𝜀𝑛}be a basis of 
an R -linear space W. _ Then {𝑒𝑖 ⊗ 𝜀𝑎|𝑖 =
1, … , 𝑛; 𝑎 = 1, … , 𝑚}is a basis of the R -linear 
space 𝑉⨂𝑊.  

Indeed, from this Proposition it follows 

that the elements {1 ⊗ 𝑒𝑘, √−1 ⊗ 𝑒𝑘|𝑘 =

1, … , 𝑛}form a basis of an R -linear space 𝑉𝑪, 

from which it already easily follows that the first 
n elements of this basis form a basis 𝑉𝑪as a C -
linear space. 

Any operator 𝑓: 𝑉 → 𝑉canonically 
defines a C -linear mapping 𝑓𝑪 = 𝑖𝑑 ⊗ 𝑓: 𝑉𝑪 →
𝑉𝑪by the formula 𝑓𝑪(∑ 𝑧𝑘 ⊗ 𝑋𝑘

𝑁
𝑘=1 ) =

∑ 𝑧𝑘 ⊗ 𝑓(𝑋𝑘)𝑁
𝑘=1 . 

Obviously, taking into account the indicated 

identification, 𝑓𝑪|
𝑁

= 𝑓, in view of which the 

mapping 𝑓𝑪is called the extension in linearity 
of the operator f . 

Proposition 2.3. A C -linear operator 
𝐹: 𝑉𝑪 → 𝑉𝑪is a linear extension of some R -
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linear operator 𝑓: 𝑉 → 𝑉if and only if 𝜏 ∘ 𝐹 = 𝐹 ∘
𝜏. 

Proof. Indeed, if 𝐹 = 𝑓𝑪, then 𝜏 ∘
𝐹(∑ 𝑧𝑘 ⊗ 𝑋𝑘

𝑁
𝑘=1 ) = ∑ 𝑧𝑘̅̅̅ ⊗ 𝑓(𝑋𝑘)𝑁

𝑘=1 = 𝐹 ∘
𝜏(∑ 𝑧𝑘 ⊗ 𝑋𝑘

𝑁
𝑘=1 ), whence it follows that 𝜏 ∘ 𝐹 =

𝐹 ∘ 𝜏. Conversely, if this relation holds, then 𝜏 ∘
𝐹(1 ⊗ 𝑋) = 𝐹 ∘ 𝜏(1 ⊗ 𝑋) = 𝐹(1 ⊗ 𝑋), 𝑋 ∈ 𝑉, 
and, by virtue of Proposition 2.1, the restriction 
𝑓 = 𝐹|𝑉of the operator F to V is defined by the 
formula 1 ⊗ 𝑓(𝑋) = 𝐹(1 ⊗ 𝑋). Obviously, in 
this case 𝐹(∑ 𝑧𝑘 ⊗ 𝑋𝑘

𝑁
𝑘=1 ) = ∑ 𝐹(𝑧𝑘 ⊗𝑁

𝑘=1

𝑋𝑘) = ∑ 𝑧𝑘𝐹(1 ⊗ 𝑋𝑘)𝑁
𝑘=1 = ∑ 𝑧𝑘(1 ⊗𝑁

𝑘=1

𝑓(𝑋𝑘)) = ∑ 𝑧𝑘 ⊗ 𝑓(𝑋𝑘)𝑁
𝑘=1 = 𝑓𝑪(∑ 𝑧𝑘 ⊗𝑁

𝑘=1

𝑋𝑘), and hence 𝐹 = 𝑓𝑪.   
The following assertion is proved in 

exactly the same way: 
Proposition 2.4. An r -ary C -linear 

mapping 𝑇: 𝑉𝑪 × … × 𝑉𝑪 → 𝑉𝑪is a linear 
extension of an r -ary R -linear mapping 
𝑇: 𝑉 × … × 𝑉 → 𝑉if and only if 𝜏 ∘ 𝑇(𝑋1, … , 𝑋𝑟) =
𝑇(𝜏𝑋1, … , 𝜏𝑋𝑟); 𝑋1, … , 𝑋𝑟 ∈ 𝑉𝑪.   

One can give another definition of 
complexification that is equivalent to the above 
one. Let V be an R -linear space. Let us introduce 
the following operations in the set :𝑉 × 𝑉 

1) Addition. If 𝑋1 = (𝐴1, 𝐵1), 𝑋2 =
(𝐴2, 𝐵2)are elements from 𝑉 × 𝑉, then the pair 
(𝐴1 + 𝐴2, 𝐵1 + 𝐵2)is called their sum and 
denoted by 𝑋1 + 𝑋2. 

2) Multiplication by a complex number. 

If 𝑋 = (𝐴, 𝐵) ∈ 𝑉 × 𝑉, 𝑧 = 𝛼 + √−1𝛽 ∈ 𝑪, then 
put 𝑧𝑋 = (𝛼𝑎 − 𝛽𝑏, 𝛼𝑏 + 𝛽𝑎). Let's call the 
element𝑧𝑋 the product of a complex number z 
and an element X . 

is directly verified that this 𝑉 ×
𝑉introduces in the set the structure of a C -linear 
space 𝑉̃𝑪, which is naturally isomorphic to the C 
-linear space 𝑉𝑪. The natural isomorphism 
𝜑: 𝑉𝑪 → 𝑉̃𝑪associates an element with 

∑ (𝛼𝑘 + √−1𝛽𝑘)𝑋𝑘
𝑁
𝑘=1 ∈ 𝑉𝑪a pair (𝐴, 𝐵) ∈ 𝑉̃𝑪, 

where 𝐴 = ∑ 𝛼𝑘𝑋𝑘
𝑁
𝑘=1 , 𝐵 = ∑ 𝛽𝑘𝑋𝑘

𝑁
𝑘=1 . Under 

this isomorphism, the embedding described 
above 𝑗: 𝑉 ⊂ 𝑉𝑪corresponds to the embedding 
𝑗̃: 𝑉 ⊂ 𝑉̃𝑪defined by the formula 𝑗̃(𝑋) =
(𝑋, 0); 𝑋 ∈ 𝑉, the complex conjugation 
operator corresponds to the operator 𝜏̃: 𝑉̃𝑪 →
𝑉̃𝑪defined by the formula 𝜏̃(𝑋, 𝑌) =
(𝑋, −𝑌); 𝑋, 𝑌 ∈ 𝑉, and the C -linear operator 
corresponds to 𝑓𝑪 = 𝑖𝑑 ⊗ 𝑓the C -linear 

operator 𝑗̃𝑪: 𝑉̃𝑪 ⊂ 𝑉̃𝑪defined by the formula 
𝑓𝑪(𝑋, 𝑌) = (𝑓𝑋, 𝑓𝑌); 𝑋, 𝑌 ∈ 𝑉. 
2.3. Complex structures 

Let V be a complex linear space. It can, in 
particular, be viewed as a real linear space 
𝑉𝑹(called the reification of the space V ) in which 
an R -linear endomorphism 𝐽0: 𝑉𝑹 → 𝑉𝑹is given, 

defined by 𝐽0(𝑋) = √−1𝑋; 𝑋 ∈ 𝑉𝑹. This 
endomorphism allows us to completely restore 
the structure of a complex linear space to V. 

Namely, if 𝑧 = 𝛼 + √−1𝛽 ∈ 𝑪, 𝑋 ∈ 𝑉, then 𝑧𝑋 =
𝛼𝑋 + 𝛽𝐽0(𝑋). Moreover, it is obvious that the 
endomorphism 𝐽0is anti-involutive, i.e. 𝐽0

2 =
−𝑖𝑑. 

Let V be a real linear space. 
Definition 2.1. A complex structure in V is an 
endomorphism 𝐽: 𝑉 → 𝑉such that 𝐽2 = −𝑖𝑑. In 
other words, a complex structure is an anti-
involutive automorphism of a real linear space. 

Fixing a complex structure in V 
canonically determines in V the structure of a 
complex linear space (that is, a C - module). 

Indeed, if 𝑋 ∈ 𝑉, 𝑧 = 𝛼 + √−1𝛽 ∈ 𝑪, then we set 
𝑧𝑋 = 𝛼𝑋 + 𝛽(𝐽𝑋).     
  ( 2.2 ) 
It is directly verified that in this case all 8 axioms 
of a C -linear space are satisfied, which we will 
denote by the same symbol V . Obviously, V as an 
R -linear space is its reification 𝑉𝑹. 

Let the dimension 𝑑𝑖𝑚𝑪𝑉of the linear 
space V as a complex space be equal to n , and let 
{𝑒1, … , 𝑒𝑛}be the basis of this space. Let 𝑋 ∈ 𝑉. 

Then 𝑋 = 𝑧𝑘𝑒𝑘, where 𝑧𝑘 = 𝛼𝑘 + √−1𝛽𝑘 ∈
𝑪; 𝑘 = 1, … , 𝑛. Taking into account (1.2), 𝑋 =
𝛼𝑘𝑒𝑘 + 𝛽𝑘(𝐽𝑒𝑘), i.e., every vector 𝑋 ∈ 𝑉𝑹is 
represented as a linear combination of vectors 
𝑒1, … , 𝑒𝑛, 𝐽𝑒1, … , 𝐽𝑒𝑛. On the other hand , let 
𝜆𝑘𝑒𝑘 + 𝜇𝑘𝐽𝑒𝑘 = 0, 𝜆𝑘, 𝜇𝑘 ∈ 𝑹Then, due to (1.2), 

(𝜆𝑘 + √−1𝜇𝑘)𝑒𝑘 = 0, and due to the С -linear 

independence of the vectors 𝑒1, … , 𝑒𝑛, 𝜆𝑘 +

√−1𝜇𝑘 = 0, and hence 𝜆𝑘 = 𝜇𝑘 = 0; 𝑘 = 1, … , 𝑛. 
Therefore, the vectors 
{𝑒1, … , 𝑒𝑛, 𝐽𝑒1, … , 𝐽𝑒𝑛}form a basis for the space 
V as an R -linear space (i.e. a basis for the space 
𝑉𝑹). Such a basis is called a real-adapted 
complex structure , in short, an RA - basis . 
Remark 2.2. Obviously, any complex structure 
is defined in the RA basis by a matrix of the form 
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(𝐽𝑗
𝑖) = (

0 −𝐼𝑛

𝐼𝑛 0
).     

  (2.3) 
As a simple but important corollary, we 

get the following 
Proposition 2.5. A finite-dimensional 

real linear space admits a complex structure if 
and only if it is even-dimensional. 

Proof. Since the RA -basis contains an 
even number of vectors, a space that admits a 
complex structure is necessarily even-
dimensional. Conversely, let V be a 2𝑛-
dimensional real linear space. We fix an 
arbitrary basis in it {𝑒1, … , 𝑒2𝑛}. Then the 
endomorphism of the 𝐽space V given by the 
matrix (2.3) in this basis is obviously a complex 
structure.    

Let be 𝐽a complex structure in an R -
linear space V . Consider the endomorphism 

𝜎: 𝑉𝑪 → 𝑉𝑪defined by the formula 𝜎 =
1

2
(𝑖𝑑 −

√−1𝐽𝑪). Obviously, 𝜎2 = 𝜎, i.e. 𝜎- projector. The 

projector complementary to it 𝜎is determined 

by the formula 𝜎 =
1

2
(𝑖𝑑 + √−1𝐽𝑪). In the 

future, allowing freedom of speech, 𝐽𝑪we will 
simply denote endomorphism 𝐽. Note that 𝐽 ∘

𝜎 =
1

2
(𝐽 + √−1𝑖𝑑) =

√−1

2
(𝑖𝑑 − √−1𝐽) = √−1𝜎, 

which means 𝐼𝑚 𝜎 ⊂ 𝐷𝐽
√−1. (Here and in what 

follows, the symbol 𝐷𝐹
𝜆denotes the proper 

subspace of the endomorphism F corresponding 
to the eigenvalue ). 

Conversely, if 𝑋 ∈ 𝐷𝐽
√−1, then 𝜎𝑋 =

1

2
(𝑋 − √−1𝐽𝑋) =

1

2
(2𝑋) = 𝑋, in particular, 𝑋 ∈

𝐼𝑚 𝜎. Thus, 𝐼𝑚 𝜎 = 𝐷𝐽
√−1. Likewise, 𝐼𝑚 𝜎 =

𝐷𝐽
−√−1. Since 𝒳𝑪(𝑀) = 𝐷𝐽

√−1 ⊕ 𝐷𝐽
−√−1we get: 

Theorem 2.1. linear space𝑉𝑪 
decomposes into a direct sum of eigenspaces of 
the endomorphism 𝐽corresponding to the 

eigenvalues √−1and −√−1, i.e., 𝑉𝑪 = 𝐷𝐽
√−1 ⊕

𝐷𝐽
−√−1, and the endomorphisms 𝜎and 𝜎are 

projections onto the subspaces 𝐷𝐽
√−1and 𝐷𝐽

−√−1, 

respectively.    
Moreover, fair 
Theorem 2.2. Defining a complex 

structure on an R -linear space V is equivalent to 
splitting 𝑉𝑪into a direct sum of two complex 

conjugate subspaces serving as proper 
subspaces of this complex structure. 

Proof. Necessity follows from Theorem 
2.1. Let now 𝑉𝑪 = 𝐷 ⊕ 𝜏𝐷. Then ∀𝑋 ∈ 𝑉𝑪  ⟹
𝑋 = 𝑋1 + 𝑋2;  𝑋1 ∈ 𝐷, 𝑋2 ∈ 𝜏𝐷. We construct an 
endomorphism 𝒥: 𝑉𝑪 ⟶ 𝑉𝑪by setting 𝒥(𝑋) =

√−1(𝑋1 − 𝑋2). Obviously, 𝜏(𝑋) = 𝜏(𝑋1) +
𝜏(𝑋2), and 𝜏(𝑋1) ∈ 𝜏𝐷, 𝜏(𝑋2) ∈ 𝐷. Therefore 

(𝒥 ∘ 𝜏)(𝑋) = √−1(𝜏(𝑋2) − 𝜏(𝑋1)). On the other 

hand, due to the antilinearity of the operator , 

(𝜏 ∘ 𝒥)(𝑋) = −√−1(𝜏(𝑋1) − 𝜏(𝑋2)) =

√−1(𝜏𝑋2 − 𝜏𝑋1). Thus, 𝒥 ∘ 𝜏 = 𝜏 ∘ 𝒥. By 
Proposition 2.3 𝒥 = 𝐽𝑪, for some R -linear 
endomorphism 𝐽: 𝑉 → 𝑉. Obviously, 𝒥2 = −𝑖𝑑, 
in particular, 𝐽2 = −𝑖𝑑, i.e. 𝐽is the complex 
structure on 𝑉. If 𝑋 ∈ 𝐷, then 𝑋 = 𝑋1, which 

means 𝒥(𝑋) = √−1𝑋1 = √−1𝑋. Therefore, 𝐷 ⊂

𝐷𝐽
√−1. Conversely, if 𝑋 ∈ 𝐷𝐽

√−1, then √−1(𝑋1 −

𝑋2) = 𝒥(𝑋) = √−1𝑋 = √−1(𝑋1 + 𝑋2), whence 

𝑋2 = 0, and hence 𝑋 ∈ 𝐷. Therefore, 𝐷𝐽
√−1 ⊂ 𝐷, 

i.e. 𝐷𝐽
√−1 = 𝐷. Likewise, 𝐷𝐽

−√−1 = 𝜏𝐷. 

     
Lemma 2.1. In the introduced notation, 

1) 𝜏 ∘ 𝜎 = 𝜎 ∘ 𝜏, 2) 𝜏 ∘ 𝜎 = 𝜎 ∘ 𝜏. 
Proof. Taking into account the 

antilinearity of the mapping and using 

Proposition 2.3, we have: 𝜏 ∘ 𝜎(𝑋) =
1

2
𝜏(𝑋 −

√−1𝐽𝑋) =
1

2
(𝜏𝑋 + √−1𝜏 ∘ 𝐽𝑋) =

1

2
(𝜏𝑋 +

√−1𝐽 ∘ 𝜏𝑋) = 𝜎 ∘ 𝜏(𝑋); 𝑋 ∈ 𝑉𝑪. 

The second relation is proved similarly.
    

Theorem 2.3. The mappings 𝜎|𝑉: 𝑉 →

𝐷𝐽
√−1and 𝜎|𝑉: 𝑉 → 𝐷𝐽

−√−1are, respectively, an 

isomorphism and an anti-isomorphism of C -
linear spaces. 

Proof. The additivity of the mappings 

𝜎|𝑉and 𝜎|𝑉is obvious. Let now 𝑧 = 𝛼 + √−1𝛽 ∈
𝑪, 𝑋 ∈ 𝑉. As already seen, 𝜎 ∘ 𝐽 = 𝐽 ∘ 𝜎 =

√−1𝜎, 𝜎 ∘ 𝐽 = 𝐽 ∘ 𝜎 = −√−1𝜎. Therefore 

𝜎(𝑧𝑋) = 𝜎(𝛼𝑋 + 𝛽𝐽𝑋) = 𝛼𝜎𝑋 + 𝛽√−1𝜎𝑋 =
𝑧(𝜎𝑋). Similarly, 𝜎(𝑧𝑋) = 𝑧̅(𝜎𝑋), and thus the 
maps 𝜎|𝑉and 𝜎|𝑉are, respectively, a 
homomorphism and an antihomomorphism of C 
-linear spaces. 

Let ∃𝑋 ∈ 𝑉and 𝜎𝑋 = 0. Applying the 
operator to both parts of this identity , taking 
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into account Lemma 2.1 and Proposition 2.1, we 
obtain that 𝜎𝑋 = 0, and hence 𝑋 = 𝜎𝑋 + 𝜎𝑋 =
0. Therefore, ker  𝜎|𝑉 = {0}. Similarly, ker  𝜎|𝑉 =
{0}, i.e. 𝜎and 𝜎are monomorphism and 
antimonomorphism, respectively. 

Let, finally 𝑋 ∈ 𝐷𝐽
√−1. Consider the vector 

𝑌 = 𝑋 + 𝜏𝑋. By Proposition 2.1, 𝑌 ∈ 𝑉. On the 
other hand, since, 𝑋 ∈ 𝐼𝑚 𝜎 = ker 𝜎taking into 
account Lemma 2.1, we have: 𝜎𝑌 = 𝜎𝑋 + (𝜏 ∘
𝜎)𝑋 = 𝑋 + (𝜏 ∘ 𝜎)𝑋 = 𝑋. Similarly, if 𝑋 ∈

𝐷𝐽
−√−1, then 𝜎𝑌 = 𝑋, and, thus, 𝜎|𝑉and 𝜎|𝑉are an 

epimorphism and an anti-epimorphism, 
respectively.     

Let, in particular, V be a real R -linear 
space, dim 𝑉 = 2𝑛, and let 𝑏 = {𝑒1, … , 𝑒2𝑛}be its 
basis as a C -module. Consider a system of 
vectors 𝑏𝐴 = {𝜀1, … , 𝜀𝑛, 𝜀1̂, … , 𝜀𝑛̂}, where 𝜀𝑎 =
𝜎(𝑒𝑎), 𝜀𝑎̂ = 𝜎(𝑒𝑎); 𝑎 = 1, … , 𝑛. By virtue of 
Theorem 2.3, the vectors {𝜀1, … , 𝜀𝑛}form the 

basis of the C -linear space 𝐷𝐽
√−1, and the vectors 

{𝜀1̂, … , 𝜀𝑛̂}form the basis of the C -linear space 

𝐷𝐽
−√−1, and, by virtue of Lemma 2.1 and 

Proposition 2.1, 𝜏𝜀𝑎 = (𝜏 ∘ 𝜎)𝑒𝑎 = (𝜎̅ ∘ 𝜏)𝑒𝑎 =
𝜎𝑒𝑎 = 𝜀𝑎̂. Moreover, by virtue of Theorem 2.1, 
the system of vectors 𝑏𝐴forms a basis of the 
space 𝑉𝑪, which is characterized by the fact that 
the endomorphism matrix 𝐽in this basis has the 
form 

(𝐽𝑗
𝑖) = (

√−1𝐼𝑛 0

0 −√−1𝐼𝑛

),   

    (2.4) 
Such a basis is called an adapted complex 
structure , in short A-basis . 
 
Conclusion. Fixing a complex structure 𝐽in a 
2𝑛-dimensional real linear space 𝑉𝑹induces the 
assignment of 𝑉𝑹an n -dimensional complex 
linear space V to the structures . Each basis 𝑏 =
{𝑒1, … , 𝑒2𝑛}of the space V canonically induces 
two bases: 

1) RA is the basis 𝑏𝑅𝐴 =
{𝑒1, … , 𝑒𝑛, 𝐽𝑒1, … , 𝐽𝑒𝑛}of the space 𝑉𝑹. Of course, 
taking into account the canonical identification, 
𝑋 ≡ 1 ⊗ 𝑋this basis can also be considered as 
the basis of the C -linear space (𝑉𝑹)𝑪. 

2) A -basis𝑏𝐴 = {𝜀1, … , 𝜀𝑛, 𝜀1̂, … , 𝜀𝑛̂} C -
linear space (𝑉𝑹)𝑪. 

Now let 𝑏 = {𝑒1, … , 𝑒𝑛}and 𝑏̃ =
{𝑒̃1, … , 𝑒̂𝑛}be two bases of the space V , 𝐶 =
𝐶𝑏𝑏̃ = (𝑐𝑏

𝑎)be the transition matrix from basis 

𝑏to basis 𝑏̃, 𝐶 = 𝐴 + √−1𝐵, where 𝐴 = (𝛼𝑏
𝑎)and 

𝐵 = (𝛽𝑏
𝑎)are the real and imaginary parts of the 

matrix C , respectively. Since, taking into 
account (1.2), 𝑒̃𝑎 = 𝑐𝑎

𝑏𝑒𝑏 = 𝛼𝑎
𝑏𝑒𝑏 + 𝛽𝑎

𝑏(𝐽𝑒𝑏), we 
have: 𝐽𝑒̃𝑎 = 𝛼𝑎

𝑏𝐽𝑒𝑏 + 𝛽𝑎
𝑏𝐽2𝑒𝑏 = −𝛽𝑎

𝑏𝑒𝑏 + 𝛼𝑎
𝑏𝐽𝑒𝑏 , 

which means that 

𝐶𝑏𝑅𝐴𝑏̃𝑅𝐴
= (

𝐴 −𝐵
𝐵 𝐴

).    

   (2.5) 
Next, 𝜀𝑎̃ = 𝜎(𝑒̃𝑎) = 𝜎(𝑐𝑎

𝑏𝑒𝑏) = 𝑐𝑎
𝑏𝜎(𝑒𝑏) =

𝑐𝑎
𝑏𝜀𝑏;  𝜀𝑎̂̃ = 𝜎(𝑒̃𝑎) = 𝜎(𝑐𝑎

𝑏𝑒𝑏) = 𝑐𝑎̅
𝑏𝜎̅(𝑒𝑏) = 𝑐𝑎̅

𝑏𝜀𝑏̂, 
which means 

𝐶𝑏𝑎𝑏̃𝐴
= (

𝐶 0
0 𝐶̅).     

   (2.6) 
Obviously, both matrices, 𝐶𝑏𝑅𝐴𝑏̃𝑅𝐴

and 𝐶𝑏𝑎𝑏̃𝐴
, can 

be treated as matrices of the same linear space 
endomorphism , (𝑉𝑹)𝑪namely, the 
endomorphism 𝑓𝑪, where 𝑓is the space 
endomorphism 𝑉𝑹, considered as an 
endomorphism of the space V , transforming the 
basis b into the basis 𝑏̃. In particular, 

det (
𝐴 −𝐵
𝐵 𝐴

) = det (
𝐶 0
0 𝐶̅) = |det 𝐶|2.  

   (2.7) 
An important consequence of this relation is 

Proposition 2.6. Fixing a complex 
structure in an R -linear space 𝑉𝑹canonically 
determines the orientation of this space. It 
consists of bases oriented in the same way as 
any RA -basis.  
 
3. Almost complex structures and the 
associated G - structure 

Definition 3.1. An almost complex 
structure on a manifold M is an anti-involutive 
endomorphism of a module 𝒳(𝑀), i.e. 𝐶∞(𝑀)-
linear mapping 𝐽: 𝒳(𝑀) → 𝒳(𝑀)such that 𝐽2 =
−𝑖𝑑. An endomorphism 𝐽is also called a 
structural endomorphism . A manifold on 
which an almost complex structure is fixed is 
called an almost complex manifold. A 
diffeomorphism of an 𝑓: 𝑀1 → 𝑀2almost 
complex manifold (𝑀1, 𝐽1)onto an almost 
complex manifold (𝑀2, 𝐽2)is called a 
holomorphic diffeomorphism if 𝑓∗ ∘ 𝐽1 = 𝐽2 ∘ 𝑓∗. 
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It is obvious that an almost complex 
structure can be considered as a complex 
structure of the module 𝒳(𝑀), considered as an 
R -linear space. As we have seen, the structure 
of a C -linear space is naturally induced on this 
linear space, and hence the structure of a 𝑪 ⊗
𝐶∞(𝑀)-module, i.e., module over the ring of 
smooth complex-valued functions on the 
manifold M . The smoothness of such a function 
is understood as the smoothness of its real and 
imaginary parts. For a better understanding of 
this structure, it is convenient to use the 
alternative definition 𝑪 ⊗ 𝐶∞(𝑀)as a 
complexification of an R -linear space 𝐶∞(𝑀), 
according to 𝑪 ⊗ 𝐶∞(𝑀) = 𝐶∞(𝑀) × 𝐶∞(𝑀). If 

(𝑓, 𝑔) = 𝑓 + √−1𝑔 ∈ 𝑪 ⊗ 𝐶∞(𝑀), 𝑋 ∈ 𝒳(𝑀), 

then by definition (𝑓 + √−1𝑔)𝑋 = 𝑓𝑋 + 𝑔(𝐽𝑋). 

Let be 𝐽an almost complex structure on 
the manifold M . It induces complex structures 
𝐽𝑚: 𝑇𝑚(𝑀) → 𝑇𝑚(𝑀)at every point 𝑚 ∈ 𝑀. In 
view of Proposition 2.5, the space 𝑇𝑚(𝑀), and 
hence the manifold M itself , are even-
dimensional. Let dim 𝑀 = 2𝑛. The number n is 
called the complex dimension of the manifold 
M. 

Theorem 3.1. Specifying an almost 
complex structure on a smooth manifold 𝑀2𝑛is 
equivalent to specifying a G -structure on this 
manifold with the structure group 𝐺 =
𝐺𝐿𝑅(𝑛, 𝑪). 

Proof. Let be 𝐽an almost complex 
structure on the manifold M . Then, at each point 
𝑚 ∈ 𝑀, a family of ℛ𝑚frames of the space is 
defined 𝑇𝑚(𝑀), which is considered as an n - 
dimensional C -linear space. It follows from the 
definition of a frame that a group 𝐺𝐿(𝑛, 𝑪)acts in 
each such family freely and transitively. 

Lemma 3.1. In some neighborhood U of 
an arbitrary point 𝑚 ∈ 𝑀, one can construct a 
family of vector fields {𝑒1

0, … , 𝑒𝑛
0}on U that form 

the basis of a module 𝒳(𝑈)as a 𝑪 ⊗ 𝐶∞(𝑈)-
module. 

Proof. We fix some RA - frame 𝑝 =
{𝜉1, … , 𝜉𝑛, 𝐽𝑚𝜉1, … , 𝐽𝑚𝜉𝑛}at the point m . As we 
know, a system of vectors 𝜉𝑘can be extended to 
a system of vector fields 𝑒𝑘

0 (𝑘 = 1, … , 𝑛)on M . 
In this case, the system of vectors 𝐽𝑚𝜉𝑘will 
continue to the system of vector fields 𝐽𝑒𝑘

0. Since 
the linear independence of the vectors of the 

frame p is equivalent to the inequality zero of 
the determinant of the transition matrix from 
the natural basis at the point m to the basic part 
of the frame p , this property is preserved in 
some neighborhood U of the point m and for 
some vector fields {𝑒1

0, … , 𝑒𝑛
0, 𝐽𝑒1

0, … , 𝐽𝑒𝑛
0}. But 

then, obviously, the system {𝑒1
0, … , 𝑒𝑛

0}of vector 
fields on U will be 𝑪 ⊗ 𝐶∞(𝑈)-linearly 
independent, and hence forms a basis of the 𝑪 ⊗
𝐶∞(𝑈)-module 𝒳(𝑈).   
  

We continue the proof of the theorem. 
Let us denote ℛ = ⋃ ℛ𝑚𝑚∈𝑀 , and introduce the 
natural projection 𝜋: ℛ → 𝑀that assigns the 
vertex to the frame 𝑝 ∈ ℛ. Now we can construct 
the mapping 𝐹𝑈: 𝜋−1(𝑈) → 𝐺𝐿(𝑛, 𝑪)by setting 
𝐹𝑈(𝑝) = 𝑔, where 𝑔is the transition matrix from 
the frame (𝑚, 𝑒1

0|𝑚, … , 𝑒𝑛
0|𝑚)to the frame p . It is 

easy to verify that the quadruple 𝐵𝐽(𝑀) =

(ℛ, 𝑀, 𝜋, 𝐺 = 𝐺𝐿(𝑛, 𝑪))forms a principal 

bundle. This principal bundle can be considered 
as a G - structure with respect to the 
monomorphism (𝑓, 𝜌̃)of the principal bundle 

𝐵𝐽(𝑀)into the principal bundle 𝐵(𝑀), where 

𝑓: ℛ → 𝐵𝑀is the map that associates the 
(𝑚, 𝑒1, … , 𝑒𝑛)space frame 𝑇𝑚(𝑀)as a C - module 
with the corresponding RA -frame, and 
𝜌̃: 𝐺𝐿(𝑛, 𝑪) → 𝐺𝐿(2𝑛, 𝑹)is the canonical Lie 
group monomorphism that associates the 

matrix with 𝐶 = 𝐴 + √−1𝐵 ∈ 𝐺𝐿(𝑛, 𝑪)the 

matrix 𝜌̃(𝐶) = (
𝐴 −𝐵
𝐵 𝐴

)whose image is the Lie 

group 𝐺𝐿𝑹(𝑛, 𝑪). 
Conversely, let be (ℛ, 𝑀, 𝜋, 𝐺𝐿𝑅(𝑛, 𝑪))a G 

-structure of this type on M . Let be 𝐽0a standard 
complex structure in the space 𝑹2𝑛given by a 
matrix of the form (2.3). Let be 𝑚 ∈ 𝑀an 
arbitrary point. We define an endomorphism 
𝐽𝑚in space by the 𝑇𝑚(𝑀)formula 𝐽𝑚 = 𝑝 ∘ 𝐽0 ∘
𝑝−1; 𝑝 ∈ 𝜋−1(𝑚). Obviously, 𝐽𝑚

2 = −𝑖𝑑, i.e. 𝐽𝑚is 
the complex structure on 𝑇𝑚(𝑀). Let us show 
that it is well defined in the sense of being 
independent of the choice of the element 𝑝 ∈
𝜋−1(𝑚). Indeed, if 𝑝 ∈ 𝜋−1(𝑚)is another such 
element, then ∃ℎ ∈ 𝐺𝐿𝑅(𝑛, 𝑪)and 𝑝 = 𝑝ℎ. 
Therefore, 𝑝 ∘ 𝐽0 ∘ 𝑝−1 = (𝑝ℎ) ∘ 𝐽0 ∘ (𝑝ℎ)−1 =
𝑝 ∘ (ℎ ∘ 𝐽0 ∘ ℎ−1) ∘ 𝑝−1 = 𝑝 ∘ 𝐽0 ∘ 𝑝−1 = 𝐽𝑚since 
the group 𝐺𝐿𝑅(𝑛, 𝑪)is obviously an 
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endomorphism invariance group 𝐽0, i.e., ℎ𝐽0 =
𝐽0ℎ; ℎ ∈ 𝐺𝐿𝑹(𝑛, 𝑪), which is checked directly. 

Let us show that the family of tensors 𝐽 =
{𝐽𝑚|𝑚 ∈ 𝑀}defines a tensor field on the 
manifold M . To do this, it suffices to prove that 
for any admissible map (𝑈, 𝜑)on M the functions 

𝑚 → 𝐽𝑗
𝑖(𝑚) = 𝑑𝑥𝑖 (𝐽𝑚 (

𝜕

𝜕𝑥𝑗|
𝑚

)) , 𝑚 ∈ 𝑀, are 

smooth on U . Let us fix a local section 𝑠: 𝑈 →
ℛof the space of the G -structure. Then, by 
construction, in the RA -frame 𝜎(𝑚)(and dual 

coreframe) we have: (𝑒𝑖 (𝐽𝑚(𝑒𝑗))) =

(
0 −𝐼𝑛

𝐼𝑛 0
) = ((𝐽0)𝑗

𝑖 ). The smoothness of the 

section is expressed in the fact that the 
components of the matrix C of the transition 
from the natural basis of the module 𝒳(𝑈)to the 
RA -basis 𝜎(𝑈)of this module, and hence the 
components of the inverse matrix 𝐶̃, are smooth 

functions. Hence,𝑚 → 𝐽𝑗
𝑖(𝑚) =

𝑑𝑥𝑖 (𝐽𝑚 (
𝜕

𝜕𝑥𝑗|
𝑚

)) = 

= 𝐶𝑘
𝑖 (𝑚)𝑒𝑘 (𝐽𝑚(𝐶̃𝑗

𝑟(𝑚)𝑒𝑟)) =

𝐶𝑘
𝑖 (𝑚)𝐶̃𝑗

𝑟(𝑚)𝑒𝑘(𝐽𝑚(𝑒𝑟)) =

𝐶𝑘
𝑖 (𝑚)𝐶̃𝑗

𝑟(𝑚)(𝐽0)𝑟
𝑘are smooth functions on U . 

Thus, 𝐽is an almost complex structure. 
Obviously, the family of RA -frames generated 
by it coincides with the space of the G -structure.
     

Theorem 3.2. Every almost complex 
manifold is even-dimensional and orientable. 

Proof. The even-dimensionality of an 
almost complex manifold (𝑀2𝑛, 𝐽)follows from 
Proposition 2.5 applied to any linear space of 
the form 𝑇𝑚(𝑀); 𝑚 ∈ 𝑀. The orientability of this 
manifold, by definition, means the existence on 
it of a differential -form 𝜏that does not vanish 
anywhere 2𝑛. But its existence is obvious for 
any neighborhood of local triviality of the 
bundle 𝐵𝐽(𝑀). Indeed, if U is such a 

neighborhood, 𝑠: 𝑈 → ℛis a section of this 
bundle over it, given by vector fields 
{𝑒1, … , 𝑒𝑛, 𝐽𝑒1, … , 𝐽𝑒𝑛}, then, by Proposition 2.6, 
it suffices to set 𝜏𝑈 = 𝑒1 ∧ … ∧ 𝑒𝑛 ∧ 𝐽∗𝑒1 ∧ … ∧
𝐽∗𝑒𝑛, where 𝐽∗(𝑢)(𝑋) = 𝑢(𝐽𝑋); 𝑋 ∈ 𝒳(𝑈), 𝑢 ∈
𝒳∗(𝑈). Let now {𝜓𝛼}𝛼∈𝐴be a partition of unity 
subject to the covering of the 𝔘 =

{𝑈𝛼}𝛼∈𝐴manifold M by the local triviality 
domains of the bundle 𝐵𝐽(𝑀). Since the 

manifold is paracompact, this cover can be 
considered locally finite without loss of 
generality. Let be 𝜏𝛼the 2𝑛-form constructed for 
the domain 𝑈𝛼;  𝛼 ∈ 𝐴. Then 𝜏 = ∑ 𝜓𝛼𝜏𝛼𝛼∈𝐴 is a 
well-defined 2𝑛-form on M . Indeed, due to the 
local finiteness of the cover 𝔘in some 
neighborhood U of each point , the 𝑚 ∈ 𝑀form 
𝜏|𝑈is the sum of at most a finite number of 
smooth forms (𝜏𝛼)|𝑈, and hence is a  
   nowhere vanishing 
2𝑛form on M. 

Remark 3.1. The even-dimensionality 
and orientability of a manifold are thus 
necessary conditions for the existence of an 
almost complex structure on this manifold. 
However, these conditions are not sufficient. 
For example, a well-known deep result of a 
topological nature is the assertion that an 2𝑛-
dimensional sphere 𝑆2𝑛admits an almost 
complex structure if and only if 𝑛 = 1either 𝑛 =
3(see [5]). Therefore, for example, a 4-
dimensional sphere, being, as is well known, an 
even-dimensional orientable manifold, does not 
admit an almost complex structure. The 
question of finding necessary and sufficient 
conditions for the existence of an almost 
complex structure on a smooth manifold is still 
open. 

Remark 3.2. Along with the principal 
bundle of VM frames over a smooth manifold 
𝑀𝑛, we can consider a more extensive principal 
bundle of complex frames over M , which we 

denote 𝐵𝑪(𝑀) = (𝐵𝑪𝑀, 𝑀, 𝜋, 𝐺𝐿(𝑛, 𝑪))by , 

where 𝐵𝑪𝑀is the union of all frames of the 

spaces (𝑇𝑚(𝑀))
𝑪

; 𝑚 ∈ 𝑀. The corresponding 

justifications do not differ in any way from the 
corresponding justifications for the main 
bundle of the WM . This principal bundle plays a 
particularly important role for almost complex 
manifolds (𝑀2𝑛, 𝐽), since it allows, along with 
the G -structure constructed above, to consider 
another 𝐵𝐽(𝑀)defining G -structure 
(𝑚, 𝑒1, … , 𝑒𝑛)defined by the monomorphism 
(𝑓, 𝜌)of 𝑇𝑚(𝑀)the principal bundle 𝐵𝐽(𝑀)into 

the principal bundle 𝐵𝑪𝑀, where 𝑓: ℛ → 𝐵𝑪𝑀A 
is a frame, and 𝜌: 𝐺𝐿(𝑛, 𝑪) → 𝐺𝐿(2𝑛, 𝑪)is a 
canonical monomorphism of Lie groups that 
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associates a matrix with 𝐶 ∈ 𝐺𝐿(𝑛, 𝑪)a matrix 

𝜌(𝐶) = (
𝐶 0
0 𝐶̅) ∈ 𝐺𝐿(2𝑛, 𝑪). As above, it is 

proved that specifying such a G -structure is 
equivalent to specifying the original almost 
complex structure. This G -structure will be 
especially important for our subsequent 
considerations; we call it a G -structure attached 
to an almost complex structure. 
 
4. Hermitian structures 

Definition 4.1. Let V be a real linear 
space. A Hermitian structure on V is a pair 
(𝐽, 𝑔 = 〈∙,∙〉), where 𝐽is a complex structure on V 
, 𝑔 = 〈∙,∙〉is a (pseudo) Euclidean structure, and 
〈𝐽𝑋, 𝐽𝑌〉 = 〈𝑋, 𝑌〉, 𝑋, 𝑌 ∈ 𝑉.    
  (4.1) 

Let be (𝐽, 𝑔 = 〈∙,∙〉)a Hermitian structure 
on V . Let us construct a mapping Ω: 𝑉 × 𝑉 →
𝑅by setting Ω(𝑋, 𝑌) = 〈𝑋, 𝐽𝑌〉, 𝑋, 𝑌 ∈ 𝑉. 
Obviously Ω(𝑌, 𝑋) = 〈𝑌, 𝐽𝑋〉 = 〈𝐽𝑌, 𝐽2𝑋〉 =
−〈𝐽𝑌, 𝑋〉 = −〈𝑋, 𝐽𝑌〉 = −Ω(𝑋, 𝑌). Thus, Ωis an 
outer 2-form on V . It is called the fundamental 
form of structure. Obviously, its skew-
symmetry is equivalent to the identity 
〈𝐽𝑋, 𝑌〉 = −〈𝑋, 𝐽𝑌〉;  𝑋, 𝑌 ∈ 𝑉,   
   (4.2) 
which, in turn, is equivalent to (4.1). An obvious 
consequence of this identity is the important 
relation 
〈𝑋, 𝐽𝑋〉 = 0;  𝑋 ∈ 𝑉.     
   (4.3) 
Recall that a Hermitian form on a complex linear 
space W is a mapping ℎ: 𝑊 × 𝑊 → 𝑪such that: 
 
The first two properties are, as usual, called 
additivity , the third, sesquilinearity , and the 
fourth, hermitian . The notions of 
nondegeneracy and positive definiteness of a 
Hermitian form are defined in the usual way. 
The non-degenerate Hermitian form will often 
be called the Hermitian metric , and the C -
linear space in which the Hermitian metric is 
fixed will be called the Hermitian space . 

Theorem 4.1. Specifying a Hermitian 
structure (𝐽, 〈∙,∙〉)in a linear space V is equivalent 
to specifying a non-degenerate Hermitian form 
ℎ = 〈〈∙,∙〉〉in V , considered as a C - linear with 
respect to 𝐽space. The positive definiteness of a 

form is 〈〈∙,∙〉〉equivalent to the positive 
definiteness of a bilinear form 〈∙,∙〉. 

Proof. Let be (𝐽, 〈∙,∙〉)a Hermitian 
structure on V . Let 〈〈𝑋, 𝑌〉〉 = 〈𝑋, 𝑌〉 +

√−1〈𝑋, 𝐽𝑌〉; 𝑋, 𝑌 ∈ 𝑉. Taking into account (4.1) 
and (4.2), it is obvious that 〈〈𝐽𝑋, 𝑌〉〉 = 〈𝐽𝑋, 𝑌〉 +

√−1〈𝐽𝑋, 𝑌〉 = √−1〈𝑋, 𝑌〉 − 〈𝑋, 𝐽𝑌〉 =

√−1(〈𝑋, 𝑌〉 + √−1〈𝑋, 𝐽𝑌〉) = √−1〈〈𝑋, 𝑌〉〉. 

Similarly, 〈〈𝑋, 𝐽𝑌〉〉 = −√−1〈〈𝑋, 𝑌〉〉, whence, 
taking into account the definition of a C -module 
in V , it follows that the form 〈〈∙,∙〉〉is linear in the 
first and antilinear in the second arguments. In 

addition, 〈〈𝑌, 𝑋〉〉 = 〈𝑌, 𝑋〉 + √−1Ω(𝑌, 𝑋) =

〈𝑋, 𝑌〉 − √−1Ω(𝑋, 𝑌) = 〈〈𝑋, 𝑌〉〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Thus, 〈〈∙,∙〉〉is a 
Hermitian form on V . Obviously, it is non-
degenerate. 

Conversely, let h be a non-degenerate 
Hermitian form in V . Consider the bilinear 
forms 𝑔 = ℜℎand Ω = ℑℎ- the real and 
imaginary parts of the form h , respectively. 

Thus, ℎ(𝑋, 𝑌) = 𝑔(𝑋, 𝑌) + √−1Ω(𝑋, 𝑌); 𝑋, 𝑌 ∈

𝑉. Since 𝑔(𝑋, 𝑌) + √−1Ω(𝑋, 𝑌) = ℎ(𝑋, 𝑌) =

ℎ(𝑌, 𝑋)̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑔(𝑌, 𝑋) − √−1Ω(𝑌, 𝑋), then, 
comparing the real and imaginary parts, we 
have: 
1) 𝑔(𝑋, 𝑌) = 𝑔(𝑌, 𝑋);   2) Ω(𝑋, 𝑌) = −Ω(𝑌, 𝑋). 
   (4.4) 

Next, √−1𝑔(𝑋, 𝑌) − Ω(𝑋, 𝑌) = √−1ℎ(𝑋, 𝑌) =

−ℎ(𝑋, 𝐽𝑌) = −𝑔(𝑋, 𝐽𝑌) − √−1Ω(𝑋, 𝐽𝑌). 
Comparing the real and imaginary parts, we get 
that 
1) Ω(𝑋, 𝑌) = 𝑔(𝑋, 𝐽𝑌);   2) 𝑔(𝑋, 𝑌) = −Ω(𝑋, 𝐽𝑌). 
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