		The Numerical Solution of Gas Filtration in Hydrodynamic Interconnected Two-Layer Reservoirs				
Abduraz	zakov Abdujabbor	Candidate of Physical and Mathematical Sciences, Associate				
		Professor, Department of Higher Mathematics, Fergana				
		F-mail: a abdurazakov@ferni uz				
Makhmudova Nasiba		Lecturer, Department of Higher Mathematics, Fergana Polytechnic				
		Institute, Fergana Uzbekistan				
		E-mail: <u>n.maxmudova@ferpi.uz</u>				
Mirzamakhmudova Nilufar		Lecturer, Department of Higher Mathematics, Fergana Polytechnic				
		Institute, Fergana Uzbekistan				
	This orticle discusses	E-mail: <u>n.maxmudova@ferpl.uz</u>				
	solution the method	s specific problems of gas intration in two-layer reservoirs. For the				
ACT	the numerical solution	on of the problem, the Maple software system was used.				
TR						
ABS						
	Kevwords:	Gas filtration, two-layer reservoir, method of lines, permeability				
	<u></u>	filtration, convergence, accuracy, time step.				

We will study the numerical solution of gas filtration when a two-layer reservoir consists of a well-permeable layer bounded from below (from above) by weakly permeable interlayers. We are investigating transient flow to perfectly vertical wells drilled in a highly permeable layer. Under some assumptions, the nonstationary boundary value problem in dimensionless form is formulated as follows, i.e. is described by the system of equations

$$\begin{cases} \frac{1}{m(x)} \frac{\partial}{\partial x} \left(k(x) \frac{\partial u}{\partial x} \right) = M(u) \frac{\partial u}{\partial t} + A(x) k(z) \frac{\partial u_1}{\partial z} \Big|_{z=1} \\ \frac{1}{m_1(x)} \frac{\partial}{\partial z} \left(k_1(z) \frac{\partial u_1}{\partial z} \right) = M_1(u_1) \frac{\partial u_1}{\partial t}, \ x, z, t \in Q_T \end{cases}$$
(1)
at initial

 $u(x,0) = \varphi(x), u_1(x,z,0) = \varphi_1(x,z), (x,z) \in \Omega$ (2)

and boundary conditions

$$k(x)\frac{\partial u}{\partial x}\Big|_{x=0} = q_0(t), \ k(x)\frac{\partial u}{\partial x}\Big|_{x=1} = q_{n+1}(t),$$

$$k_1(z)\frac{\partial u_1}{\partial z}\Big|_{z=0} = 0, \ u(x,t) = u_1(x,1,t), \ (x,z,t) \in Q_T$$
(3)

Pairing (matching) condition

$$\left[u\right]_{x=x_{k}}=0,\ \left[k\left(x\right)\frac{\partial u}{\partial x}\right]_{x=x_{k}}=q_{k}\left(t\right),\ k=\overline{1,n}$$

(4) Where

$$Q_T = \Omega \times (0,1) \times (0,T], \ \Omega = \bigcup_{k=0}^n \Omega_k, \ \Omega_k = (x_k, x_{k+1})$$

ISSN: 2795-7667

Assume that, with the smoothness of the coefficients of the system of equations, there is a unique solution to the initial-boundary value problems (1)-(4), [1].

For an approximate solution (1)-(4). Let us cover with straight lines $t = t_i$, where

$$t_j = j\tau, \ j = 1, 2, ..., N; \ N = \left[\frac{T}{\tau}\right]$$

Denote

by $\{u_j(x), u_{ij}(x, z)\}$ desired

approximate value of the desired function $\{u(x,t), u_1(x,z,t)\}$ on a straight line $t = t_i$. We approximate problems (1)-(4) by the following scheme

$$\begin{cases} \frac{1}{m(x)} \frac{d}{\partial x} \left(k(x) \frac{du_j}{dx} \right) = M\left(u_{j-1} \right) \delta_i u_j + A(x) k_i(z) \frac{\partial u_1}{\partial z} \bigg|_{z=1} \\ \frac{1}{m_1(z)} \frac{\partial}{\partial z} \left(k_1(z) \frac{\partial u_{ij}}{\partial z} \right) = M_1\left(u_{ij-1} \right) \delta_i u_{ij} \end{cases}$$

(5)
With the following conditions

$$u_0(x) = \varphi(x), u_1(x, z) = \varphi_1(x, z),$$

 $k(x) \frac{du_j}{dx}\Big|_{x=0} = q_0(t_j), k(x) \frac{du}{dx}\Big|_{x=1} = q_{n+1}(t_j),$
 $\begin{bmatrix} u_j \end{bmatrix}_{x=x_k} = 0, \quad k(x) \frac{du_j}{dx}\Big|_{x=x_k} = q_k(t_j),$
 $k_1(z) \frac{\partial u_1}{\partial z}\Big|_{z=0} = 0, \quad u_j(x) = u_{1j}(x, z),$

Let the coefficients of the system of equations (5) be calculated $t = t_{i-1}$. Then each of equations (5) is linear with respect to $\{u_j, u_{ij}\}$

and has a unique solution [5-11].

For a numerical solution, we will change the function

$$V_{j} = u_{j} + F_{1j}(x) - F_{2j}(x)$$

$$V_{1j} = u_{1j} + F_{1j}(x) - F_{2j}(x)$$
Where
$$F_{1j}(x) = q_{0}(t_{j})\sigma(x) - q(t_{j})R(x)$$

$$F_{1j}(x) = \begin{cases} 0 \quad npu \quad x \in \overline{\Omega} \\ \sum_{i=1}^{k} q_{i}(t_{j}) \int_{x_{i}}^{x} \frac{d\lambda}{k(\lambda)} \quad npu \ x \in \overline{\Omega} \end{cases}$$

$$q(t_{j}) = q_{n+1}(t_{j}) - \sum_{k=1}^{n} q_{k}(t_{j})$$

$$\sigma_{0}(x) = \int_{x}^{1} m(\xi) d\xi, \qquad \sigma_{1}(x) = \int_{0}^{x} m(\xi) d\xi,$$

$$\sigma(x) = \frac{1}{\sigma_{0}(0)} \int_{x}^{1} \frac{\sigma_{0}(\lambda)}{k(\lambda)} d\lambda, \qquad R(x) = \frac{1}{\sigma_{1}(1)} \int_{0}^{x} \frac{\sigma_{1}(\lambda)}{k(\lambda)} d\lambda$$

Then we arrive at the following boundary value problem for systems of ordinary differential equations

$$\begin{cases} \frac{1}{m(x)} \frac{d}{dx} \left(k(x) \frac{dV_{j}}{\partial x} \right) = \frac{M(u_{j-1})}{\tau} V_{j} - \frac{M(u_{j-1})}{\tau} \left[F_{1j}(x) - F_{2j}(x) \right] + \\ + \left[\frac{q_{0}(t_{j})}{\sigma_{0}(0)} - \frac{q(t_{j})}{\sigma_{1}(1)} \right] + A(x)k_{1}(z) \frac{dV_{1j}}{\partial z} \Big|_{z=1} - \frac{M(u_{j-1})}{\tau} V_{j-1} \\ \\ \frac{1}{m_{1}(z)} \frac{\partial}{\partial z} \left(k_{1}(z) \frac{\partial u_{ij}}{\partial z} \right) = \frac{M(u_{ij-1})}{\tau} V_{ij} - \frac{M_{1}(u_{j-1})}{\tau} \left[F_{1j}(x) - F_{2j}(x) \right] - \frac{M_{1}(u_{ij-1})}{\tau} V_{ij-1} \\ \\ \frac{du_{j}}{dx} \Big|_{x=0} = \frac{dV_{j}}{dx} \Big|_{x=1} = 0, \quad \left[V_{j} \right]_{x=x_{i}} = 0, \quad \left[k(x) \frac{dV_{j}}{dx} \right]_{r=x} = 0, \quad k_{1}(z) \frac{\partial V_{ij}}{\partial x} \Big|_{z=0} = 0, \quad V_{1j}(x,1) = V_{j}(x) \end{cases}$$

The approximate solution constructed by the method of lines converges at a rate $0(\tau)$ [2].

For numerical implementation, we will use the method of a modified version of the sweep differential. Consider a model boundary value problem.

$$\begin{cases} \frac{\partial}{\partial x} \left(k\left(x\right) \frac{\partial u^{2}}{\partial x} \right) = 2m\mu \frac{\partial u}{\partial t} + Ak_{1}\left(z\right) \frac{\partial u_{1}^{2}}{\partial z} \bigg|_{z=1} \\ \frac{\partial}{\partial z} \left(k_{1}\left(z\right) \frac{\partial u_{1}^{2}}{\partial z} \right) = 2m_{1}\mu \frac{\partial u_{1}}{\partial t} \\ \left\{ 0 < x < 1, 0 < z < H_{1}, 0 < t \le T \right\} \\ \text{With initial conditions} \\ u\left(x, 0\right) = u_{1}\left(x, z, 0\right) = u_{0} = cons`t, 0 < x < 0, 0 < z \le H_{1} \end{cases}$$

And boundary conditions

$$b_{0}H_{1}\frac{k(x)}{\mu}\frac{u}{u_{0m}}\frac{\partial u}{\partial x}\Big|_{x=0} = Q(t)$$

$$k(x)\frac{\partial u}{\partial x}\Big|_{x=1} = 0$$

$$u_{1}(x,1,t) = u(x,t)$$

$$k_{1}(z)\frac{\partial u_{1}}{\partial z}\Big|_{z=0} = 0$$

Here $-u_0$ initial formation pressure distribution

 $k_1(z)$ and k(x) reservoir permeability

 μ_1 , μ_2 - the thickness of the layers, *m*, m_1 - the formation porosity

Q(t) - daily consumption.

We pass to dimensionless variables according to the formula

$$\xi = \frac{x}{L}; \eta = \frac{z}{H_1}; P_1 = \frac{u_1}{u_0}; P = \frac{u}{u_0}$$
$$k_1^*(\eta) = \frac{k_1(z)}{k_{xop}}, k(\xi) = \frac{k(x)}{k_{xop}}$$
$$t^* = \frac{k_{xop}u_0}{2m\mu L^2}t$$

Where $A^4 = \frac{L^2}{H_1 A_2}$, $M = \frac{m_1}{m} \frac{A_1^2}{L}$ u_0 – initial

plastic pressure distribution

 $K_2(\mathbf{x})$ u $K_1(z)$ – permeability of the first and second formation, u_1 u u_2 – layer thickness, θ_o^* – daily consumption of the gallery, b_0 – seam width, K_{xap} – and characteristic permeability of the formation.

$$\begin{cases} \frac{\partial P}{\partial t^*} = \frac{\partial}{\partial \xi} \left(K^*(\xi) \frac{\partial P^2}{\partial \xi} \right) - A^* K_1^*(\eta) \frac{\partial P^*}{\partial \eta} \Big|_{\eta=1} \\ M \frac{\partial P_1}{\partial t^*} = \frac{\partial}{\partial \eta} \left(K_1^*(\eta) \frac{\partial P_1^2}{\partial \eta} \right) \\ P_1(\xi, \eta, 0) = P_2(\xi, 0) = u_0 = const \\ K^*(\xi) \frac{\partial P_2^2}{\partial \xi} \Big|_{\xi=0} = Q^*(t), \quad K^*(\xi) \frac{\partial P^2}{\partial \xi} \Big|_{\xi=1} = 0 \\ P_1(\xi, 1, t) = P(\xi, t), \quad K_1(\eta) \frac{\partial P_1^2}{\partial \eta} \Big|_{\eta=0} = 0 \end{cases}$$

To illustrate, consider an example with the following data:

$$u_0 = 150ai;$$
 $m_0 = 0.01;$ $m_1 = 0.2;$ $\mu = 0.01cns;$ $K_0(x) = 4\partial apcu;$ $K_1(z) = 0,01\sqrt{\frac{z}{H_1}}\partial apcu;$

$$Q = 10^5 m^3 / cyt$$
; $b_0 = 50m$; $H_1 = 200m$; $H_2 = 20m$

Table 1 compares the calculation of the problem $P_1(\xi, \eta, t^*) u P(\xi, t^*)$ with different steps τ at $t^* = 3.24$. Table 2-3 gives an approximate value $P_1(\xi_1, \eta, t^*)$ and $P(\xi_1, t^*)$

calculated in time steps $\delta=6.62~~{\rm and}~\tau=3.9~~{\rm for}$

a different point in time t^* at $t^* = 0.48$.

The accuracy of the numerical values of the pressure field is controlled by the balance equation, in which for a given problem, the deviation of the approximate values from the exact ones does not exceed at $t^* = 3.24$; 0.1% throughout the calculation interval.

The calculation is based on the application of the Maple system (to solve differential equations), we use the Runge-Kutta method

Table 1. The Runge-Kutta method

ξ η	0	0.5	1	
1	0.9889	0.9883	0.9889	1.62
1	0.9889	0.9883	0.9899	3.24
05	0.9892	0.986	0.9892	1.62
0.5	0.9893	0.9886	0.9893	3.24
0	0.9894	0.9887	0.9894	1.62
	0.9894	0.9888	0.9894	3.24

z^*	3.24			32.4			64.8		
η	0	0. 5	1	0	0. 5	1	0	0. 5	1
	0.	0.	0.	0.	0.	0.	0.	0.	0.
1	98	98	98	88	88	88	77	77	77
	89	83	89	86	78	86	70	62	70
	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.5	98	08	98	88	88	88	77	77	77
	82	86	92	89	82	89	74	66	74
	0.	0.	0.	0.	0.	0.	0.	0.	0.
0	98	98	98	88	88	88	77	77	77
	94	87	94	91	84	91	76	68	76
P_{cp}	0.989820			0.989938			0.780245		
$\int_{0}^{1} P_2(\xi)$	[₹] , <i>t</i>) <i>d ξ</i> 0.988671			0.888305			0.776721		
$q_1(t^*)$	$0.44306 \ 10^{-1}$			0.44654			0.89382		
$\overline{K_n(t^*)}$	⁾ 0.6645			0.6690			0.6702		

$K_n(t^*) = -\frac{q_1(t^*)}{t_0}$										
$\int_{0} Q \ d\tau$										
z^*	3.24			32.4			64.8			
η^{ξ}	0	0. 5	1	0	0. 5	1	0	0. 5	1	
1	0. 98 89	0. 98 83	0. 98 89	0. 88 83	0. 88 85	0. 88 93	0. 77 85	0. 77 77	0. 77 85	
0.5	0. 98 93	0. 98 86	0. 98 93	0. 88 96	0. 88 89	0. 88 96	0. 77 89	0. 77 83	0. 77 89	
0	0. 98 94	0. 98 88	0. 98 94	0. 88 98	0. 88 93	0. 88 98	0. 77 91	0. 77 89	0. 77 91	
P_{cp}	0.98	8876	1	0.88	0.889276			0.778815		
$\int_{0}^{1} P_2(\xi$	<i>,t)dξ</i> 0.988739			0.889004			0.778221			
$q_1(t^*)$	0.44	408 1	0-1	0.44421			0.89096			
$\overline{K}_n(t^*)$	⁾ 0.6628			0.6678			0.6682			

References

1. Абдуразаков, А., Махмудова, Н., & Мирзамахмудова, Н. (2020). Численное решение методом прямых интеграла дифференцирования уравнений, связанных фильтрации С задачами газа. Universum: технические науки, (7-1 (76)), 32-35.

- 2. Abdurazakov, A., Makhmudova, N., & Mirzamakhmudova, N. (2021). On one method for solving degenerating parabolic systems by the direct line method with an appendix in the theory of filration. *European* Journal of Research Development and Sustainability (EIRDS), 2.
- 3. Abdurazakov, A., Makhmudova, N., & Mirzamakhmudova, N. (2021). On one method for solving degenerating parabolic systems by the direct line method with an appendix in the theory of filration. European Journal of Research Development and Sustainability (EJRDS), 2.

- 4. Абдуразаков, A., Махмудова, Η., & Мирзамахмудова, Н. (2019). Решения многоточечной краевой задачи фильтрации газа В многослойных пластах с учетом релаксации. Universum: технические науки, (11-1 (68)), 6-8.
- 5. Abdurazakov, A., Mirzamahmudova, N., & Maxmudova, N. (2021). "Iqtisod" yo'nalishi mutaxassislarini tayyorlashda matematika uslubiyoti. Scientific fanini o'qitish progress, 2(7), 728-736.
- 6. Abdurazakov, A., Makhmudova, N., & Mirzamakhmudova. N. (2020).The numerical solution by the method of direct integrals of differentiation of equations have an application in the gas filtration theorem.
- 7. Abdurazaqov, A., & Mirzamahmudova, N. T. (2021). Convergence of the method of straight lines for solving parabolic equations with applications of hydrodynamically unconnected formations. *Ministry* Higher *Of* And Secondary Special Education Of The Republic Of Uzbekistan National University Of Uzbekistan Uzbekistan Academy Of Sciences Vi Romanovskiy Institute Of Mathematics, 32.