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A sun-synchronous orbit, sometimes called an helio-synchronous orbit, is when the 
Earth orbits the sun at a constant angle relative to the Earth-sun direction. In this work, 
the analytical technique for third body perturbation on sun-synchronous orbit satellites 
for prograde and retrograde orbits computed for short periods At a time interval of one 
day, the dynamic development of sun-synchronous orbits is considered. It was 
accomplished by utilizing the numerical output results from the celestial mechanics' 
version 1 software program package. The integration was carried out by using the 
Celestial Mechanics software program SATORB module (Beutler, 2005) created at the 
University of Bern's Institute of Astronomy. With input data given by the Two-Line 
Elements (TLE). Represented by six orbital elements and three Coordinates axes and 
acceleration components which were used to solve the variation of parameters 
equations (VOP) using a technique known as collocation method. It is reasonable to 
assume that the change in orbital elements is seen in both types of perturbations that 
have the greatest impact on the moon's impact. With the addition of the Geocentric 
equatorial coordinate system, Kepler's orbit, and acceleration combinations, there was 
no discernible change in the coordinate system or acceleration components, which 
appeared to be secular in both results. The results show that the Moon perturbation has 
the greatest influence on orbital elements and that the perturbation is amplified by 
satellite heights. 

Keywords: Third body perturbation; Low orbits satellites; Retrograde and 
programed orbits; Orbital elements.  

1- Introduction  

The Meteor-M spacecraft series is being 
developed as a prime contractor for Roskosmos 
by RSC (Research and Production Corporation) 
VNIIEM in Moscow. Each satellite in the series 
weighs 2,800 kg, including 1,250 kg for the 
satellites' multi-instrument payload suite. While 
the Meteor-M satellites share several 
instruments, some are unique to each spacecraft 
to increase the available data [1]. In 
astrodynamics, studying and modeling 

perturbations are important fields. Even though 
the majority of the solution approaches have 
been around for a long time, Perturbations are 
motions that deviate from a normal, idealized, or 
unaltered state. We tend to think of the cosmos as 
being quite regular and predictable. However, 
good observational data frequently exposes 
inexplicable anomalies of motion overlaid on the 
celestial bodies' more regular or mean 
movements [2]. Although the exact location of a 
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low Earth orbit is unclear, it is generally thought 
to be between 100 and 1000 kilometers above 
the Earth's surface. This is the most cost-
effective and straightforward orbit for a 
spacecraft to enter. Getting a spacecraft into a 
low-earth orbit (LEO) uses less energy than 
getting it into a higher-altitude orbit [3]. Due to 
the impact of numerous "disturbing" factors, a 
satellite's real orbit deviates from the Keplerian 
orbit. This includes, among other things, the 
Earth's non-spherical gravity, the gravitational 
influences of the moon and sun, atmospheric air 
drag, and solar radiation pressure. These 
disrupting forces produce temporal changes in 
the orbital elements of secular, long- and short-
periodic nature (orbital perturbations). The real 
orbit can be thought of as the envelope of 
Keplerian ellipses provided by the actual orbital 
components at any given time (osculating 
ellipses). Artificial Earth satellites have been 
used for geodetic applications such as locating 
and determining the Earth's gravitational field 
and rotation characteristics since the launch of 
Sputnik I in 1957. Only a few satellite missions 
have been specifically intended for geodetic 
purposes. However, geodesy makes 
considerable use of a vast number of satellites 
produced for navigation, remote sensing, and 
geophysics [4]. The satellite motion is called 
prograde motion when the inclination is 
between 0 and 90 degrees. Retrograde motion is 
defined as motion that is oriented westward for 
inclinations between 90 and 180 degrees [5]. 
Satellites are attracted not just by the Earth's 
central force, but also by its non-central force, 
the sun and moon's attractive forces, and the 
drag force of the atmosphere. Solar radiation 
pressure, Earth and ocean tides, general 
relativity effects, and coordinate perturbations 
all have an impact on them. Satellite motion 
equations must be expressed using perturbed 
equations [6].  Third body perturbation has a 
long time of study and investigations with many 
research and papers concluding different 
subjects working with this topic these as an 
example for this study is Kozai Yoshihide (1959), 
the current article deduces as a function of mean 
orbital elements and time perturbations of six 
orbital elements of a near-earth satellite passing 
through the earth's gravitational field without 

meeting air resistance. No assumptions are made 
about the degree of eccentricity or inclination [7]. 
According to Kozai Yoshihide (1973) this paper 
pioneered an entirely new approach for 
computing lunisolar perturbations. The 
disturbing function is defined as the satellite's 
orbital components and the sun and moon's polar 
coordinates [8]. Lara M. (2012) used perturbation 
theory based on Lie transformations and higher-
order averaging to investigate the long-term 
evolution of GNSS-type orbits[9]. Roscoe W.T.C. 
(2015) studied the impact of lunisolar 
perturbation on a satellite by utilizing differential 
orbital elements to express the relative velocity of 
the satellite in absolute and differential terms 
[10]. B. Saedeleer (2006) The analytical theory of 
the Moon's third body, was studied using the Lie 
transform method for averaging Hamiltonians in 
cases of synchronous rotation, the Lunar 
oblateness, the Lunar triaxiality, and the 
significant influence of the Earth's lunisolar 
rotation (ELP 2000) [11]. According to Beutler 
(2006), the paper discusses the development of 
effective methods for predicting the orbits of low-
earth-orbiting objects (LEOs) in the presence of 
imprecisely characterized force fields. Pseudo-
stochastic pulses, piecewise constant 
accelerations, or piecewise linear and continuous 
accelerations are used to compensate for the 
force field's deficiencies [12]. Xua Guangyan, Luo 
Jianfu and others (2014) Using the Reference 
Satellite Variable, this paper derives equations for 
low earth satellites and their relative motion 
under lunar perturbation (RSV). The derivation 
incorporates some plausible assumptions to 
simplify the results and emphasize the third 
body's influence [13]. Kuznetsov E. D. and Jasim 
A. T.  This study examines the dynamic evolution 
of sun-synchronous orbits during a time range of 
20 years. The dynamic evolution of two families 
of sun-synchronous orbits with altitudes of 751 
and 1191 km is explored about the starting value 
of the ascending node longitude. Numerical 
motion simulations were performed using the 
Celestial Mechanics software program created at 
the University of Bern's Institute of Astronomy 
[14]. Ahmed K. Izzet and others (2019) The 
primary purpose of this study is to calculate the 
tide effect perturbations on LEO satellites. This, 
adjustments in the orbital elements must be 
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made. These elements stay constant in the 
absence of perturbations. The results indicate 
that tidal disturbance's influence on orbital 
elements depends on the satellite orbit's 
inclination. The variance in the ratio diminishes 
as the inclination of the satellite increases but 
increases as the period grow [15]. Chihabi Yazan 
and Ulrich Steve (2021) Using conventional 
orbital components, this article presents an 
analytical solution for the relative velocity of two 
spacecraft. The analytical solution is obtained by 
forward propagating the orbital elements in 
time and accounting for gravitational field 
perturbations up to the fifth harmonic, third-
body, and drag secular and periodic 
perturbations and calculating the relative 
motion in the local-vertical–local-horizontal 
reference frame at each time step. Compared to 
a numerical simulator, the analytical solution 
accurately characterized the relative motion, 
with errors on the order of meters at separation 
distances of hundreds of meters [16]. Dua Yujun 
and Zhang Fangzhao (2021): Theoretically and 
numerically, we explore these effects using 
Gaussian equations of motion. According to the 
study, PNPM's effect may be classified into two 
groups. The first component is a rotational error 
in the perturbing force vector caused by the 
force vector being converted to a coordinate 
system without accounting for PNPM effects; the 
second component is an error in the satellite 
coordinates computed in the Earth-Centered 
Earth-Fixed (ECEF) or True-of-Date (TOD) 
coordinate system without accounting for PNPM 
effects. Additionally, a straightforward semi-
analytical correction strategy is shown. 
Keplerian elements can be employed instantly 
without requiring a recalculation of the 
solutions. This method effectively corrects the 
error produced when the PNPM was 
disregarded [17]. Ahmed K. Izzet and others 
(2019) The primary purpose of this study is to 
calculate the tide effect perturbations on LEO 
satellites. This, adjustments in the orbital 
elements must be made. These elements stay 
constant in the absence of perturbations. The 
results indicate that tidal disturbance's influence 
on orbital elements depends on the satellite 
orbit's inclination. The variance in the ratio 
diminishes as the inclination of the satellite 

increases but increases as the period grow [15].  
Najlaa Ozaar Hasan and others (2021): The 
research was divided into two sections; the first 
examines the effects of air drag on various area-
to-mass ratios of LEO satellites, while the second 
examines various inclination values. Each 
component includes a section on modeling 
perturbation effects, and the last section 
examines the effects of air drag at various node 
values. The simulation was conducted using the 
SATORB module of the Celestial Mechanics 
software system (Beutler, 2005). The results 
indicate that the impacts are stronger for 
retrograde orbits since the satellite travels in the 
opposite direction. The atmospheric drag effects 
were amplified by raising the area to mass ratio 
of all orbital components. When the value of a 
node increases [18]. Elisa Maria Alessi, Alberto 
Buzzoni and others (2021).  The purpose of this 
study is to evaluate the orbital development of 
the mean eccentricity as defined by the Molniya 
satellites constellation's Two-Line Elements 
(TLE) set. The bottom-up technique is used to 
achieve synergy between observable dynamics 
and mathematical simulation. With the long-term 
development of eccentricity as the primary 
emphasis, the dynamical model used is a doubly-
averaged formulation of the third-body 
disturbance caused by the Sun and Moon and the 
oblateness influence on the satellite's orientation. 
The findings demonstrate that the second-order 
expansion captures the behavior remarkably well 
despite the very elliptical orbits. Additionally, the 
lunisolar influence is not negligible for the 
behavior of the ascending node's longitude and 
the pericenter's argument. Finally, a frequency 
series analysis is suggested in order to 
demonstrate [19].  Dua Yujun and Zhang 
Fangzhao  (2021) Theoretically and numerically, 
we explore these effects using Gaussian equations 
of motion. According to the study, PNPM's effect 
may be classified into two groups. The first 
component is a rotational error in the perturbing 
force vector caused by the force vector being 
converted to a coordinate system without 
accounting for PNPM effects; the second 
component is an error in the satellite coordinates 
computed in the Earth-Centered Earth-Fixed 
(ECEF) or True-of-Date (TOD) coordinate system 
without accounting for PNPM effects. 
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Additionally, a straightforward semi-analytical 
correction strategy is shown. Keplerian elements 
can be employed instantly without requiring a 
recalculation of the solutions. This method 
effectively corrects the error produced when the 
PNPM was disregarded [17]. 

This study aims to analyze the third body 
perturbation of the Low Earth orbit METEOR-M  
satellite for prograde and retrograde orbits 
using celestial mechanics software program 
version one. Additionally the study demonstrate 
that how it impacts orbital elements, Geocentric 
equatorial Coordinates system, kepler’s orbit 
and components of acceleration during one day. 

2. Sun-synchronous orbit 

Sun-synchronous orbits in which the ascending 
node's secular rate of right ascension is equal to 
the mean sun's right ascension rate. To be sun-
synchronous, the inclination, semi-major axis, 
and eccentricity of the satellite orbit. A typical 
sun-synchronous orbit has an inclination of 98.7 
degrees and a mean orbit height of 833 
kilometers. Circular orbits at low height  [20]. 

(
𝒅𝛀

𝒅𝒕
)
𝒔
= −

𝟑

𝟐
𝒏 𝑱𝟐 (

𝑹

𝑷
)
𝟐

𝐜𝐨𝐬 𝒊 = 𝟎. 𝟗𝟖𝟓𝟔 
𝒅𝒆𝒈

𝒅𝒂𝒚
 

Where 

𝒏 = √
𝝁

𝒂𝟑   orbit mean motion 

R = Earth equatorial radius 

𝒑 = 𝒂(𝟏 − 𝒆𝟐) 

 

3. Simulation of satellite motion in Sun-
synchronous satellite via numerical models 

The motion of Sun-synchronous near-circular 
orbit, mean altitude of 7195 km, inclination = 
𝟗𝟖. 𝟖𝟓° and 𝟏. 𝟕𝟏° with period of 101.3 minutes, 
local equatorial crossing time at 12:00 hours. 
Significant perturbing factors, such as the 
Moon's and Sun's pull, were considered. The 
perturbing bodies' coordinates were obtained 
using numerical ephemerides DE200/LE200). 
Using the Celestial Mechanics software system's 
SATORB module (Beutler, 2005). Since the 
integration is performed over a short time 
period and no connection to individual data is 
required, the beginning epoch of September 17, 

2009, was chosen for ease of use of the numerical 
model. The integration was done using the 12th 
order collocation approach with integration 
order of 12 and  automatic step selection 607.2 
seconds in one day of age with tabular interval of 
0.1. The model used in this process which is Joint 
Gravity model (JGM3) the JGM model was 
developed with NASA and the university of Texas 
in 1994 [21][22]. 

4. Perturbation due to third body 

       The equations of motion of two point masses 
M and m when they interact are as follows 

𝑴�⃗� ̈𝑴 = 𝑮𝑴𝒎
�⃗� 𝑴𝒎

𝒓𝑴𝒎
𝟑

   𝒂𝒏𝒅   𝒎�⃗� ̈𝒎

= 𝑮𝑴𝒎
�⃗� 𝒎𝑴

𝒓𝒎𝑴
𝟑

 … (𝟏) 

Where r is the vector's length, index Mm indicates 
that the vector points from point-mass M to 
point-mass m and single index M or m indicates 
that the vector points to point-mass M or m. By 
introducing additional point masses m(j), j = 1, 
2,..., the attraction of m(j) on M and m may be 
expressed, and summations can calculate the 
total attraction [23]. 

 

𝑴�⃗� ̈𝑴 = 𝑮𝑴𝒎

�⃗� 𝑴𝒎

𝒓𝒎𝑴
𝟑

+ ∑𝑮𝑴𝒎(𝒋)
�⃗� 𝑴𝒎(𝒋)

𝒓𝑴𝒎(𝒋)
𝟑

𝒋

 

𝒎�⃗� ̈𝒎 = 𝑮𝑴𝒎
�⃗� 𝒎𝑴

𝒓𝒎𝑴
𝟑

+ ∑𝑮𝒎𝒎(𝒋)
�⃗� 𝒎𝒎(𝒋)

𝒓𝒎𝒎(𝒋)
𝟑

𝒋

 

By dividing the two preceding equations by −𝑴 
and 𝒎 and then adding them together, one 
obtains 

    �⃗� ̈𝒎 − �⃗� ̈𝑴 = −𝑮(𝑴 + 𝒎)
�⃗� 𝑴𝒎

𝒓𝒎𝑴
𝟑

+ ∑𝑮𝒎(𝒋) {
�⃗� 𝒎𝒎(𝒋)

𝒓𝒎𝑴
𝟑

−
�⃗� 𝑴𝒎(𝒋)

𝒓𝑴𝒎(𝒋)
𝟑 }…  (𝟐)

𝒋

 

Letting �⃗� = �⃗� 𝒎 − �⃗� 𝑴 using the point mass (M) as 
the origin substituting  �⃗� 𝒎𝒎(𝒋) = −(�⃗� 𝒎 − 𝒓𝒎(𝒋)) 

in the right side of equation (2) and removing the 
mass m ( mass of satellite)  
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�⃗� ̈ = −𝑮𝑴
�⃗� 

𝒓𝟑
− ∑𝑮𝒎(𝒋) {

�⃗� − �⃗� 𝒎(𝒋)

|�⃗� − �⃗� 𝒎(𝒋)|
𝟑

𝒋

+
𝒓𝒎(𝒋)

𝒓𝒎(𝒋)
𝟑

}… . . (𝟑) 

It is self-evident that the first component on the 
right represents the earth's core force; hence, 
the disturbance forces of various point masses 
acting on the satellite are then calculated. 

�⃗� 𝒎 = −𝒎∑𝑮𝒎(𝒋) {
�⃗� − �⃗� 𝒎(𝒋)

|�⃗� − �⃗� 𝒎(𝒋)|
𝟑 +

�⃗� 𝒎

𝒓𝒎(𝒋)
𝟑

}

𝒋

…(𝟒) 

 

Where Gm(j) denotes the sun, moon, and 
planets' gravitational constants [23]. 

 

5. Collocation method 

The collocation approach is used to solve the 
problem of starting value. Collocation algorithms 
use a polynomial of degree q to estimate the 
initial value issue inside the subintervals 𝑰𝒌, 
which is (in general) greater than Euler's 
approach. (The collocation algorithm is 
simplified to the Euler algorithm for q = n.) The 
order of the technique is also known as the 
polynomial degree 𝒒 ≥ 𝒏. The problem with the 
interval as the starting value may be stated as: 

𝒚𝒌
(𝒏)

= 𝒇(𝒕, 𝒚𝒌, �̇�𝒌, … , 𝒚𝒌
(𝒏−𝟏)

 ) 

𝒚𝒌
(𝒊)(𝒕𝒌) = 𝒚𝒌𝟎

(𝒊)
     𝒊 = 𝟎, 𝟏,… . , 𝒏 − 𝟏 

Where  𝒚𝒌𝟎
(𝒊)

 is initial value 

The collocation algorithm of order 𝒒 ≥  𝒏 uses a 
polynomial of degree q to approximate the initial 
value issue or the boundary value problem in the 
interval 𝑰𝒌= [𝑰𝒌, 𝒕𝒌 + 𝟏]. 

𝒚𝒌(𝒕) = ∑
𝟏

𝒍!
(𝒕 − 𝒕𝒌)

𝒍

𝒒

𝒍

 𝒚𝒌𝟎
(𝒍)

……(𝟓) 

Within the interval 𝑰𝒌, the differential equation 
system was solved by numerical solution at 
exactly 𝒒 + 𝟏 − 𝒏  distinct epochs 𝒕𝒌𝒋

 ,  𝒋 =

𝟏, 𝟐,… , 𝒒 + 𝟏 − 𝒏  

6.  Conservative Forces Lagrangian (VOP) 

The VOP technique is well-suited for generating 

the equations of motion of perturbed dynamical 
systems. The concept is founded on the 
assumption that if the solution's constants are 
extended to be time-varying parameters, we may 
utilize the unperturbed system to represent the 
solution to the perturbed system. The 
unperturbed system is a two-body system that 
consists of a series of formulae for determining 
the position and velocity vectors at a given time. 
Bear in mind that these computations depend on 
the six orbital components and time. We may 
theoretically employ any set of unchanged motion 
constants, including the original position and 
velocity vectors. Time is related to motion 
equations via mean, eccentric, and actual 
anomaly conversions. The Lagrangian planetary 
equations of motion, or simply the Lagrangian 
VOP, are the essential theory for calculating the 
orbital components' rates of change. It is named 
after Lagrange since he is credited with 
formulating these equations for the first time for 
all six orbital elements. He was mesmerized by 
the minute perturbations of planets' orbits 
around the Sun caused by their gravitational 
attraction [24]. 

The planetary equation of Lagrange for the orbit 
of a celestial body in a two-body situation is 
stated as [22]. 

 

�̇� = ∓
𝟐

𝒏𝟐𝒂

𝝏𝑹

𝝏�̇�𝟎

………… . . (𝟔) 

�̇� = −
√|𝟏 − 𝒆𝟐|

𝒏 𝒂𝟐𝒆
 
𝝏𝑹

𝝏𝝎
−

𝟏 − 𝒆𝟐

𝒏𝟐𝒂𝟐𝒆

𝝏𝑹

𝝏�̇�𝟎

… . (𝟕) 

𝒅𝒊

𝒅𝒕
= −

𝟏

𝒏 𝒂𝟐√|𝟏 − 𝒆𝟐| 𝐬𝐢𝐧 𝒊
 
𝝏𝑹

𝝏Ω

+
𝐜𝐨𝐭 𝒊

𝒏 𝒂𝟐√|𝟏 − 𝒆𝟐|
 
𝝏𝑹

𝝏𝑻�̇�

…(𝟖) 

Ω̇ =
𝟏

𝒏𝒂𝟐√|𝟏 − 𝒆𝟐| 𝐬𝐢𝐧 𝒊
 
𝝏𝑹

𝝏𝒊
………… . . (𝟗) 

�̇� =
√|𝟏 − 𝒆𝟐|

𝒏 𝒂𝟐𝒆

𝝏𝑹

𝝏𝒆
−

𝐜𝐨𝐭 𝒊

𝒏 𝒂𝟐√|𝟏 − 𝒆𝟐|

𝝏𝑹

𝝏𝒊
… . (𝟏𝟎) 

�̇�𝟎 =
𝟐 

𝒏𝟐𝒂

𝝏𝑹

𝝏𝒂
+

𝟏 − 𝒆𝟐

𝒏𝟐𝒂𝟐𝒂

𝝏𝑹

𝝏𝒆

̇
………… . (𝟏𝟏) 

 



Volume 5| April 2022                                                                                                                                                   ISSN: 2795-7667     

 

Eurasian Journal of Physics, Chemistry and Mathematics                                           www.geniusjournals.org 

                                         P a g e  | 66  

7. Non-conservative forces Gaussian form 

It is sometimes more convenient to 
represent disturbing accelerations directly at 
the satellite in componential form rather than 
using partial derivatives of the disturbing 
potential in the elements. This is especially true 
for orbits with a large eccentricity, for which 
series expansions would need a large number of 
terms in e. Gauss proposed a feasible alternative 
form. Three mutually perpendicular components 
are used to resolve the perturbing forces 
operating on the satellite [24]. 

As an example, consider the following collection 
of Gaussian perturbation equations to reduce 
(RSW) [22]. 

�̇� = √
𝒑

𝝁
 

𝟐𝒂

𝟏 − 𝒆𝟐
{𝒆 𝐬𝐢𝐧𝒗𝑹 +

𝒑

𝒓
𝑺}… . . (𝟏𝟐) 

�̇� = √
𝒑

𝝁
  {𝐬𝐢𝐧 𝒗 𝑹 + (𝐜𝐨𝐬𝒗 + 𝐜𝐨𝐬𝑬) 𝑺 }… . . (𝟏𝟑) 

𝒅𝒊

𝒅𝒕
=

𝒓 𝐜𝐨𝐬 𝒖

𝒏 𝒂𝟐
 𝑾………………(𝟏𝟒) 

Ω̇ =
𝒓 𝐬𝐢𝐧𝒖

𝒏 𝒂𝟐√𝟏 − 𝒆𝟐  𝐬𝐢𝐧 𝒊
 𝑾……… . (𝟏𝟓) 

 

�̇� =
𝟏

𝒆
√

𝒑

𝝁
 {− 𝐜𝐨𝐬 𝒗 𝑹 + (𝟏 +

𝒓

𝒑
) 𝐬𝐢𝐧 𝒗 𝑺}

− 𝐜𝐨𝐬 𝒊 Ω̇ … . (𝟏𝟔) 

�̇�𝟎 = −
𝟏 − 𝒆𝟐

𝒏𝟐 𝒂𝒆
{(𝐜𝐨𝐬 𝒗 − 𝟐𝒆

𝒓

𝒑
)𝑹 − (𝟏 +

𝒓

𝒑
) 𝐬𝐢𝐧 𝒗 𝑺}

−
𝟑

𝟐𝒂
(𝒕 − 𝑻�̇�) �̇� …… (𝟏𝟕) 

Where 𝒗 is true anomaly, 𝑬 is eccentric anomaly 
and 𝒖 = 𝝎 + 𝒗 is the argument of latitude of the 
celestial body. The perturbation equations above 
are divided into two groups, the first of which 
contains the equations for the semimajor axis a 
(which defines the size), the eccentricity e 
(which defines the shape), and the time T0 of 
pericenter passage (which defines the dynamics) 
of the orbital motion, and the second of which 
contains the three Eulerian angles I and, which 
define the orbital plane and the orientation of 
the conic section within it [25]. 

 

 

8. Results and discussion 

( a ) 

 

( b ) 

 

( c ) 
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(d)  

 

 

 

 

 

 

(e) 

 

( f ) 

 

Figure 1: Orbital elements under the influence of 
Third body perturbation for retrograde Low 
Earth Orbit satellite  (LEO). Where (a) denotes the 
Semi Major axis, (b) denotes eccentricity, (c) 
denotes inclination, (d) denotes right ascension, 
(e) denotes perigee argument, and (f) denotes 
mean anomaly. 

( a) 
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( b ) 

 

( c ) 

 

( d ) 

 

 

 

 

 

 

 

 

 

( e ) 

 

( f ) 

 

Figure 2: Orbital elements under the influence of 
Third body perturbation for prograde Low Earth 
(LEO) satellite. 

 

Figure (1) and (2) depict the effect of third-body 
perturbation (Moon, Sun) on orbital elements for LEO 
satellites in retrograde and prograde orbits. As shown 
in the figures, the elements (RA, Arg and Mean 
anomaly) are more affected by the Moon than the 
Sun, while the inclination of the satellite is much 
more affected by Sun gravitation than that caused by 
the Moon. The semi-major axis (a) and eccentricity 
(e), which govern the size and shape of the orbits, 
respectively is unaffected by the third body 
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perturbation. As in the figures, the three Eulerian 
angles I, RA, and Arg) decrease for retrograde orbits 
while increasing for prograde orbits. The shift in 
Mean anomaly also rises for retrograde orbits while 
decreasing for prograde orbits. 

 

( a ) 

 

( b ) 

 

( c ) 

 

 

 

 

 

( d ) 

 

( e ) 
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Figure (3): Geocentric equatorial coordinates 
under Third body perturbation for retrograde 
Low Earth Orbit (LEO) Satellite Where: (a) 
represent X-axis, (b) Y-axis, (c) Z-axis, (d) 
Argument of latitude, and (e) Coordinates in 3D. 

 

( a ) 

 

( b ) 

 

( c )  

 

( d ) 

 

 

 

 

 

 

 

( e ) 
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Figure (4): Geocentric equatorial coordinates 
under third body perturbation for prograde Low 
Earth orbit (LEO) satellite. 

 

As shown in figures (3) and (4), the research also 
covers the portion of perturbation on Geocentric 
equatorial coordinates (X, Y and Z). The results 
indicated that the impacts of the Sun and Moon 
perturbations on low–altitude satellites are equal 
and periodic but with a great range of influence for 
both retrograde and prograde orbits, and this 
assessment also applies to the argument of latitude. 

( a ) 

 

 

 

 

 

 

 

( b )  

 

( c ) 

 

( d ) 

 

Figure (5): Keplerian orbit during 
perturbation on retrograde Low Earth Orbit 
satellite (LEO). Where: (a) represent radial, 
(b) along-track, (c) out of plane and (d) 
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acceleration components in 3D. 

 

 

( a )  

 

( b )  

 

( c )  

 

 

 

 

 

 

( d )  

 

Figure (6): Keplerian orbit during 
perturbation on prograde Low Earth Orbit 
satellite (LEO). 

 

Figures (5) and (6) illustrate the changes in radial, 
along-track, and out-of-plane directions of the 
perturbed orbits about the osculating orbits. in figure 
(5) the radial direction has small and periodic effect 
with highest influence of Sun perturbation, and in the 
out of plane the rate of perturbation increasing with 
time and have greatest effect of Moon at point equal 
to 𝟗𝟎 𝒎  and at ≈ 𝟒𝟎 𝒎 for Sun effect. In figure (6) 
the radial direction which has short period effect with 
highest effect for Sun, the out of plane has increasing 
rate of change with increasing the period of time with 
maximum influence at 𝟓𝟎 𝒎 for Moon effect and at 
𝟐𝟓 𝒎 for Sun effect. Prograde orbits have a higher 
difference in radial and along direction than 
retrograde orbits, while the difference in out-of-plane 
direction is greater in retrograde. The sun has a 
stronger radial influence than the moon, whereas the 
moon has a more significant out-of-plane effect. In 
total high effect is recognized in sections of out of 
plane and along direction. 

( a ) 
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( b ) 

 

( c ) 

 

( d ) 

 

Figure (7): Acceleration components directions 
during perturbation on retrograde Low Earth 
Orbit (LEO) satellite. Where: (a) represent radial, 
(b) along-track, (c) out of plane and (d) 
acceleration components in 3D. 

 

( a ) 

 

( b ) 
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( c ) 

 

 

 

 

 

( d ) 

 

Figure (8): Acceleration components 
directions during perturbation on retrograde 
Low Earth Orbit satellite (LEO).  

 

The perturbation effects on accelerations in three 
directions (radial, along-track, and out of plane) 
are shown in figures (7) and (8). The results show 
that the effects of the sun and the moon on radial 
and out of plane direction is periodic and tiny 
range of influence so on acceleration components 
for low-altitude satellites are identical and small, 
but along direction has a different effect. 

 

9. Conclusion 

This work examined the effects of third-body 
perturbation (moon, sun) on LEO orbit satellites 
for retrograde and prograde orbit. We determined 
that the moon and the sun had the same influence 
on the motion of the satellites by comparing their 
effects on the component of geocentric equatorial 
coordinates and orbital elements, so on Kepler's 
orbit and acceleration components. The third 
body does not have recognized influence in the 
orbits near the atmosphere of Earth at an altitude 
below 1000 km which be more influenced by Drag 
force and radiations force as much as the orbits 
move through an altitude of below 1000 km more 
than this range of heights third body has grater 
effects seen in high orbits as geostationary, GPS 
and earth observation satellites. 

When the effects of the moon and the sun are 
compared, the impacts on the out of plane 
acceleration components are different. However, 
because of the two planets' influences, there is a 
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divergence in the perturbed orbits component 
regarding osculating orbits. Prograde orbits were 
more influenced than retrograde orbits in the 
radial and along direction components, but 
retrograde orbits seemed more impacted in the 
other component. 
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