

On the Implementation of Interdisciplinary Relationships in Classes in Chemistry with Disciplines of the Professional Cycle

Daminova Gulruh	Doctoral student of TSPU named after Nizomi
Bahromovna	
This article describes and experimental cla	s the methodology and tasks of developing the structure of practical asses in chemistry based on interdisciplinarity .
Keywords:	interdisciplinarity, systematization, integration, analysis, algorithm, experiment, technological map, nitrogen and its compounds atom Butherfrod

The problem of choosing and typifying teaching methods is one of the main problems of science, and the experience gained in solving it forms the basis for building a system of methods for interdisciplinary integrativemethodical training of students.

A special place is given to the chemical experiment, which is for the future teacher a source of indispensable professional and methodological knowledge, skills and values, and at the same time a means of mastering them. At the same time, experience is important for students' knowledge of the basics of chemistry, especially when the teacher works in the main direction of interdisciplinary integrative learning. In this case, experience serves as a teaching method, a means of creating problem situations, solving problems and proving their truth. In addition, the experiment is an important factor in the formation of students' motivation to study chemistry, their attitude to the acquired knowledge and skills [1].

Given the above, considering the experimental and methodological training of students as an integral part of training at a university, providing the formation of an indispensable set of knowledge on the technique and methodology of chemical experiments, as well constructive. as organizational, managerial and other experimental skills, it is desirable to develop integrative experimental guides that teach the formation of skills and application them in activity. This determines the importance of considering the possibilities of including techniques and methods of conducting an experiment in the content of interdisciplinary integrative-methodical training of a future teacher [2]. Experimental and methodological training of students is carried out in practical classes. Therefore, their content, the logic of organization and transmission, first of all, should be reconstructed on the principles of an interdisciplinary integrative approach. At the same time, one of the goals of experimental and methodological training is to reveal the integrative and developing potential of the experiment and acquire knowledge, skills and experience in applying it in professional activities.

At the same time, in addition to the logic of setting and solving educational problems as structural units of the content of a chemistry lesson, mastering the technique and methodology for conducting experiments on an interdisciplinary integrative basis is a complex process. Only when considering the experiment as a component of the development process, carrying out the experiment as a method and means of teaching, can one understand the educational and creative value of experience, determine its impact on the student, and therefore achieve conscious application in further professional activity.[3]

In this regard, an algorithm for organizing practical classes was developed and tested. This allows us to effectively reconstruct the current practice of experimental and methodological training of students according the principles of an interdisciplinary to integrative approach. According to this algorithm, it is required to prepare for the lesson and determine its goals and objectives, as well as observe the following rules:

1. Drawing up a thematic plan for studying the topic of the chemistry course, which will be discussed in the lesson. The definition of interdisciplinary integrative classes, identifying problematic elements, referring to visual materials.

2. Determining the logic of conducting interdisciplinary integrative lessons through: the learning objectives of the lessons, their hierarchy and cause-and-effect relationships, the place of problems in the structure of the lesson content, internal and interdisciplinary connections necessary to solve them. , determine the types of experiments corresponding to the content of the tasks from the list of related scientific experiments.

3. Determine the place and role of experiments in identifying and solving educational problems, as well as the best methods and methods for their implementation.

4. Separately design the process of interdisciplinarity and problem solving for each lesson, observing the following main steps: updating the basic knowledge and methods of action of students, creating an integrative statement of the problem, setting a learning problem, eliminating problems, proof. found solution and application

5. Refinement of the logic of conducting interdisciplinary integrative classes, taking into account the developed technological and methodological projects for the formation and solution of their integrative educational tasks.

6. The distribution of experiments from the general list of experiments related to related sciences into the corresponding sections of chemistry, taking into account the characteristics of their goals and content. Consideration of the role of experiments in the structure and content of lessons, techniques and ways of conducting them.

7. Draw up a final lesson plan, taking into account the methodology for conducting lessons developed on the topic.

8. Determine the methods and forms of involving students in the preparation of technological and methodological projects of their lessons, while simultaneously implementing all the experiments provided for in the lesson.

9. Determination of the quality of the educational process, activities and achievements of students, criteria and indicators.[4,5]

Thus, the proposed algorithm is aimed at the assimilation by students of an interdisciplinary integrative methodology for teaching chemistry in active cognitive activity. This will be helped by the solution of educational and methodological problems and development of technological the and methodological projects as a result of an appropriate experiment. In addition, the algorithm works first as an object of special education, and then as a means of selforganization and self-control of students' activities, a means of self-realization of their creative potential.

The experience of using the considered algorithm allows us to speak about its advantages. By ensuring that students master the techniques and methods of conducting experiments, you can also achieve the following:

- a comprehensive understanding of the process and methods of development of teaching chemistry; - formation and development of skills to design different types of lessons, plan the process of setting and solving educational problems;

-understanding the role of the experiment as the leading integrative-developing method and means of teaching chemistry, stimulating the activity of students and forming their value attitudes towards chemical knowledge and skills, as a factor in the conscious assimilation of program material;

- formation of skills of choice and complex inclusion in the process of formation and solution of problems in an expedient and rational combination of various means, methods and forms of training;

- acquisition of experience in professional and methodological activities.

Technological map of the lesson on the topic:

The methodology for studying the topic "Nitrogen and its compounds" is based on interdisciplinary integration.

The purpose of the lesson: to acquaint students with the content of the course of inorganic chemistry, its features and

interdisciplinary interactive teaching methods; mastering the technique and methodology of conducting a chemical experiment in the learning process.

List of suggested experiences for the lesson

1) Obtaining nitrogen in the laboratory (decomposition of ammonium nitrite).

2) Obtaining nitrogen from sodium or potassium nitrite and ammonium chloride.

3) Removal of nitrogen from the air

4) Obtaining nitrogen by decomposition of ammonium dichromate (volcano on the table).

5) Obtaining and properties of ammonia in the laboratory.

6) Qualitative reactions characteristic of the ammonium ion.

7) properties of nitric acid

8) Qualitative reactions characteristic of the nitrate ion

A fragment of the technological map of the lesson on the development of teaching methods on the topic "Nitrogen and its compounds".

Theme "Nitrogen and its compounds"			
Educational Problems	Stages of formation and	List of experience and information used	
losson	solution of educational	in the process of solving educational	
lesson	tasks of the lesson	problems	
1) What methods of	1) actualization of basic	a) obtaining nitrogen by decomposition	
collecting nitrogen and	knowledge, skills, use of	of ammonium nitrite in the laboratory.	
ammonia are accepted	interdisciplinary	NH4NO2 = 2H2O+N2	
in the laboratory?	information;	Or	
Which one can be	2) creation of an	NH4Cl+NaNO2==NaCl+2H2O+N2	
harvested based on	interdisciplinary	b) checking the properties of the	
the water extraction	integrative situation;	collected nitrogen	
method?	3) setting a learning	c) obtaining ammonia and testing its	
2) To study the	task;	properties	
composition of air,	4) solution of the	Physics Information	
Rutherford conducts	educational problem;	Two nitrogen atoms are connected by	
the following	5) proof and application	three strong bonds, forming a	
experiment: a mouse,	of the found solution.	molecule.	
which is kept in a	3) description of the	Nitrogen is poorly soluble in water, it is	
closed vessel for a	learning problem;	a colorless gas with a density slightly	
certain time, dies, then	4) solution of the	lower than that of air.	
a lighted candle is	educational problem;	700 volumes of ammonia dissolve in 1	
inserted into the	5) proof and application	volume of water.	

Distribution of experiments at interdisciplinary integrative lessons of the subject

1 1		
vessel and held until it	of the found solution.	Information about biology
goes out, then, when	3) description of the	Atmospheric air is 78% nitrogen, and
the phosphorus has	learning problem;	blue-green algae, nodule bacteria living
burned out in the	4) solution of the	in the roots of legumes, convert free
container, it becomes	educational problem:	nitrogen into nitrates (nitrification).
very flashy for a short	5) proof and application	Some bacteria can break down nitrates
time After passing the	of the found solution	to nitrogen (dinitrification)
residual gas through	3) description of the	At high pressure, the nitrogen supplied
lime water a non-	learning problem:	with air discolves in the blood if the
flammable non-	4) solution of the	prossure decreases rapidly the
flammable non	adjugational problem	discolved nitrogen forms hubbles and
naminable, nomically	El proof and application	remains in the using which is called
respirable, chemically	of the found solution	decompression sideness (sheemed
Stable gas remains.	of the found solution.	decompression sickness (observed
Explain experimental	3) description of the	with a rapid rise from under the
procedures.	learning problem;	water).
3) Pour copper	4) solution of the	Under the influence of lightning,
powder on one side of	educational problem;	nitrogen in the atmosphere is oxidized
a two-bottom test	5) proof and application	and forms nitric oxide (NO 2). It
tube, and a piece of	of the found solution.	dissolves in water to form nitrites and
lithium on the other,	3) description of the	nitric acid. Nitrite and nitrate ions are
and close the neck	learning problem;	absorbed by plants.
with a stopper. Heat	4) solution of the	Nodule bacteria convert nitrogen into
the copper side of the	educational problem;	ammonium salts. Ammonium salts are
test tube first, and	5) proof and application	absorbed by plants in ionic form and
when the copper	of the found solution.	synthesize proteins. Animals eat plants
powder turns dark,		and turn plant protein into animal
heat the lithium side a		protein. When animals and plants die,
little. Drop water on		putrefactive bacteria decompose
the lithium side and		proteins, urea and nucleic acids to
notice the smell of		ammonia (ammonification). Ammonia
ammonia. Explain the		is oxidized to nitrite and nitrate
processes step by step.		(nitrification). Nitrates are taken up by
write the reaction		plants. Geographic information
equations.		At the Chirchik Electrochemical Plant.
4) What is the reason		ammonia is initially produced from
for the transition to		atmospheric nitrogen using electricity
natural gas raw		After natural gas was delivered from
materials instead of		the Bukhara region through the
water as a source of		nineline natural gas was used as a
hydrogen for the		feedstock (as a source of hydrogen)
nyurogen for the		Plants for the production of nitrogon
ammonia at the		fortilizers and chemical fiber from
Chirchile		natural gas are also located in the sition
Electrochomical Diant?		of Forgona and Nave:
True under alasterister		NoNO 2 is found in Chile Change the
iry water electrolysis		nano 5 is iouna in unile (nence the
hudrogen		name chill mitratej.
nyarogen.		increasing the amount of greenhouse
5) what qualitative		gases, carbon dioxide, sulfur oxides and
reaction can be carried		nitrogen dioxide (NO) in the
out on the ammonium		atmosphere causes the problem of the

in i
e

A chemical experiment fixes students' attention to methodological preparation for the integration, synthesis and multilateral application of knowledge, skills and values, the formation of experience in their application in activities, as well as methods and means of organizing and managing the educational process., serves.

Literature

- 1. Aliyorova NO, Ismoilov EO, Kudirov Sh.Sh. _ Possibilities of using the integration of natural sciences in the teaching of biomass and biogas formation processes. // Popular scientific-practical magazine "Modern education", T., 2015, issue 6. -31-36-b.
- Alasdair Cameron, Jaskie Jones. Raising objectives // Renewable energy world. -NewYork , 2006. Volume 9, number 2. -Pp. 90-92.
- Kroon MA, van Swaaij RACMM, Zeman M., Metselaar JW Study of the Design of the a-Si: H Transverse Junction Solar Cell. //Proc. of the 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion. -New York, 1997. - Rr . 57-63.
- Daminova GB Kimyoda fanlararo integratsiya // o'quv qo'llanma ./ Toshkent 2022yil. 74-98b.
- 5. Daminova GB Zamonaviy ta'lim muhitida integrallashgan Kimyo darslarini tashkil qilish // O'zMU Xabarlari ilmy jurnali . 62-66 b.
- Daminova GB Kimyo fanini o'qitishda fanlar integratsiyasidan foydalanish va uni o'quv jarayoniga tadbiq etish // Ta'lim , fan va innovation . Ma'naviy-

ma'rifiy , ilmiy uslubiy journal . 2021. Nº2.

 Kamolova N. _ I. _ Methods for compiling and solving methodological issues with biochemical composition. In Best Scientific Paper 2020(pp 11-14)