

Biomarkers Of Hypoxia In Chronic Rhinosinusitis: Pathophysiological And Diagnostic Implications

Khalida Shaykova

Tashkent medical academy, Uzbekistan

Gavhar Khaydarova

Tashkent medical academy, Uzbekistan

ABSTRACT

Chronic rhinosinusitis (CRS) is a complex inflammatory disease of the sinonasal mucosa, affecting approximately 10-12% of the adult population worldwide and significantly impairing quality of life. A hallmark of CRS pathogenesis is the development of local hypoxia caused by ostial obstruction, mucosal swelling, and inflammation-induced vascular remodeling. Hypoxia acts both as a consequence and amplifier of chronic inflammation, contributing to epithelial barrier disruption, immune dysregulation, and tissue remodeling. This review focuses on the interplay between hypoxia and inflammation in CRS and highlights key hypoxia-related biomarkers such as hypoxia-inducible factor-1 alpha (HIF-1 α), vascular endothelial growth factor (VEGF), mucin 5AC (MUC5AC), reactive oxygen species (ROS), high-mobility group box 1 (HMGB1), interleukin-8 (IL-8), and epithelial tight junction proteins (ZO-1, E-cadherin). These biomarkers reflect the underlying molecular mechanisms that sustain the chronic inflammatory state and have potential diagnostic and prognostic utility. Their evaluation may aid in patient phenotyping, monitoring disease progression, and tailoring personalized therapies. Further research is needed to standardize biomarker assessment and validate their clinical relevance in CRS management.

Keywords:

chronic rhinosinusitis, hypoxia, inflammation, biomarkers, HIF-1 α , VEGF, MUC5AC, oxidative stress

Introduction and Relevance

Chronic rhinosinusitis (CRS) is a heterogeneous inflammatory condition of the nasal and paranasal sinus mucosa, defined by persistent symptoms lasting over 12 weeks, including nasal congestion, facial pain, mucopurulent discharge, and olfactory dysfunction [1]. CRS is subdivided into CRS with nasal polyps (CRSwNP) and without nasal polyps (CRSsNP), each characterized by distinct histopathological and immunological profiles [2].

The pathogenesis of CRS is multifactorial, involving impaired mucociliary clearance, microbial colonization, and an aberrant host immune response leading to chronic mucosal inflammation [3]. A critical yet often

underappreciated factor is mucosal hypoxia resulting from obstruction of sinus ostia and mucosal edema, which leads to a locally reduced oxygen supply [4]. Hypoxia is not merely a secondary phenomenon but actively contributes to the perpetuation of inflammation, epithelial barrier dysfunction, and tissue remodeling through complex molecular pathways [5].

Understanding the molecular interplay between hypoxia and inflammation in CRS is essential for identifying biomarkers that can facilitate early diagnosis, phenotyping, and treatment monitoring. This paper reviews key hypoxia-associated biomarkers implicated in CRS

pathogenesis and discusses their clinical relevance.

In CRS, sinus ostia obstruction due to mucosal edema, nasal polyps, or anatomical anomalies disrupts normal airflow and oxygen supply, creating a hypoxic microenvironment [16]. Inflammation further exacerbates hypoxia by recruiting metabolically active immune cells (neutrophils, eosinophils, macrophages) that consume oxygen and release pro-inflammatory mediators such as tumor necrosis factor-alpha (TNF- α) and interleukin-1 beta (IL-1 β). These cytokines induce vascular dysfunction, promoting microcirculatory disturbances and ischemia in the mucosa.

Hypoxia in CRS can be classified into several types based on the underlying mechanism:

- **Hypoxic hypoxia:** Reduced oxygen partial pressure within sinus cavities due to ventilation impairment.
- **Respiratory hypoxia:** Resulting from mucociliary clearance dysfunction and mucus accumulation.
- **Circulatory (ischemic) hypoxia:** Caused by impaired blood flow and microvascular changes in inflamed tissue.
- **Histotoxic hypoxia:** Mitochondrial dysfunction impairs cellular oxygen utilization despite adequate oxygen delivery.
- **Mixed hypoxia:** Combination of the above mechanisms, typical in CRS.

Aim

This study aims to provide a comprehensive analysis of the pathophysiological role of hypoxia in CRS, focusing on its relationship with chronic inflammation and epithelial barrier disruption. The paper seeks to identify and evaluate the main biomarkers associated with hypoxia in CRS and discuss their potential applications in clinical diagnostics and disease management.

Materials and Methods

A systematic review of peer-reviewed articles published between 2008 and 2024 was conducted using databases such as PubMed, Scopus, and Web of Science. Keywords included "chronic rhinosinusitis," "hypoxia," "biomarkers," "HIF-1 α ," "VEGF," "MUC5AC,"

"oxidative stress," and "epithelial barrier." Articles focusing on human studies related to the molecular mechanisms of hypoxia and inflammation in CRS were prioritized. Data on the expression, functional role, and clinical significance of hypoxia-related biomarkers were extracted and synthesized.

Results and Discussion

Pathophysiology of Hypoxia in CRS

The obstruction of sinus ostia by mucosal swelling or nasal polyps creates a hypoxic microenvironment characterized by decreased oxygen tension in the sinonasal mucosa [4]. Hypoxia leads to stabilization of hypoxia-inducible factor-1 alpha (HIF-1 α), a transcription factor that orchestrates cellular adaptive responses to low oxygen levels [6]. Upon stabilization, HIF-1 α translocates to the nucleus and promotes transcription of target genes involved in angiogenesis (VEGF), mucin production (MUC5AC), glycolysis, and inflammatory mediator secretion [6].

In CRS, elevated HIF-1 α expression correlates with increased VEGF levels, promoting angiogenesis and vascular permeability that contribute to mucosal edema and polyp formation [8]. Concurrently, hypoxia-induced upregulation of MUC5AC results in excessive mucus production, exacerbating sinus obstruction and bacterial colonization [9].

Hypoxia also compromises epithelial barrier integrity by downregulating tight junction proteins such as zonula occludens-1 (ZO-1) and E-cadherin, facilitating increased permeability and pathogen infiltration [10,11]. This disruption enhances immune activation and perpetuates local inflammation.

Inflammatory Mediators and Oxidative Stress

Hypoxic conditions promote the generation of reactive oxygen species (ROS), mainly via NADPH oxidase enzymes like DUOX2, which inflict oxidative damage on epithelial cells and activate pro-inflammatory signaling pathways [12,13]. Elevated ROS levels induce release of damage-associated molecular patterns (DAMPs), including high-mobility group box 1 (HMGB1), which acts as a potent pro-inflammatory mediator stimulating neutrophil recruitment and cytokine production [10,11].

IL-8, a key neutrophil chemoattractant, is upregulated in CRS tissues under hypoxia via ROS and HMGB1 signaling, further amplifying neutrophilic inflammation [7,8]. This inflammatory milieu sustains epithelial damage and remodeling, contributing to symptom persistence and treatment resistance.

Clinical Implications of Hypoxia-Related Biomarkers

The identification of hypoxia-related biomarkers has significantly deepened our understanding of the complex pathophysiology underlying chronic rhinosinusitis (CRS). These biomarkers not only reflect the molecular consequences of hypoxia on the sinonasal mucosa but also provide valuable tools for clinical application, particularly in differentiating disease phenotypes, guiding personalized treatment, and monitoring therapeutic outcomes.

Differentiation of CRS Phenotypes

CRS is broadly categorized into two major clinical phenotypes: chronic rhinosinusitis with nasal polyps (CRSwNP) and chronic rhinosinusitis without nasal polyps (CRSsNP). These phenotypes differ not only in clinical presentation but also in immunopathology, prognosis, and treatment response. Hypoxia-related biomarkers offer a promising avenue to distinguish these phenotypes more objectively. For example, elevated levels of **hypoxia-inducible factor-1 alpha (HIF-1 α)** and **vascular endothelial growth factor (VEGF)** have been consistently observed in CRSwNP patients [2]. This is consistent with the predominant eosinophilic inflammation, extensive tissue remodeling, and angiogenesis characteristic of this phenotype. VEGF-driven neovascularization contributes to polyp growth and mucosal edema, while HIF-1 α promotes mucin hypersecretion and survival of inflammatory cells under hypoxic conditions.

In contrast, **neutrophil-associated biomarkers** such as **interleukin-8 (IL-8)** and **reactive oxygen species (ROS)** are more prominent in CRSsNP, which typically exhibits a neutrophilic, Th1/Th17-skewed inflammatory pattern (Stevens et al., 2016). Elevated IL-8 attracts neutrophils, while increased ROS generation results in oxidative tissue damage,

sustaining chronic inflammation and epithelial barrier dysfunction.

Thus, quantifying these biomarkers can enhance the diagnostic resolution beyond clinical symptoms and endoscopy, allowing a molecular phenotyping approach that correlates with underlying pathobiology.

Diagnostic and Prognostic Utility

Measurement of hypoxia-related biomarkers in accessible samples such as nasal secretions, lavage fluids, or mucosal biopsies has shown potential to improve diagnostic accuracy. For instance, elevated nasal secretion levels of HIF-1 α or VEGF might predict the presence and severity of nasal polyposis, while increased IL-8 and oxidative stress markers could indicate an ongoing neutrophilic inflammatory response in CRSsNP.

Moreover, these biomarkers may serve as **prognostic indicators**. Higher VEGF expression has been linked to increased polyp recurrence after surgery, suggesting its role as a marker of aggressive disease and poor prognosis [10]. Similarly, persistent oxidative stress markers may indicate refractory inflammation resistant to conventional therapies.

Personalized Therapeutic Approaches

The phenotypic insights gained from biomarker profiling can guide more **personalized treatment strategies**. For example, patients with high HIF-1 α and VEGF levels (typical of CRSwNP) may benefit from therapies targeting angiogenesis or hypoxia pathways, including emerging biological agents that inhibit IL-5 or IgE pathways known to intersect with hypoxia signaling. Conversely, CRSsNP patients with predominant neutrophilic inflammation and oxidative stress might respond better to therapies aimed at reducing ROS or neutrophil recruitment.

In addition, monitoring biomarker levels over time may help assess the **response to treatment**. A decrease in VEGF or HIF-1 α after corticosteroid therapy or biologics could reflect mucosal healing and reduced hypoxia, whereas persistently elevated markers might indicate treatment failure or disease relapse, prompting timely adjustments in therapy.

Challenges and Future Directions

Despite the promising applications, several challenges remain before hypoxia-related biomarkers can be fully integrated into routine clinical practice. A major limitation is the **lack of standardized methods** for sampling, processing, and quantifying these biomarkers, which results in variability across studies and hampers cross-comparison. Furthermore, many current studies involve small cohorts or are limited to experimental settings.

There is a critical need for large-scale, multicenter clinical trials to **validate the sensitivity, specificity, and predictive value** of these biomarkers across diverse patient populations. The development of point-of-care diagnostic assays or non-invasive sampling techniques would also facilitate their clinical adoption.

Ultimately, integrating hypoxia-related biomarkers with other molecular, radiological, and clinical data into comprehensive diagnostic algorithms will enhance personalized medicine approaches in CRS, improving patient outcomes through tailored, mechanism-based therapies.

Conclusion

Hypoxia is a critical factor driving and sustaining chronic inflammation in CRS through molecular mechanisms involving HIF-1 α stabilization, VEGF-mediated angiogenesis, mucin overproduction, epithelial barrier disruption, oxidative stress, and pro-inflammatory mediator release. Key hypoxia-related biomarkers—including HIF-1 α , VEGF, MUC5AC, HMGB1, IL-8, ROS, ZO-1, and E-cadherin—offer promising tools for improving CRS diagnosis, patient stratification, and personalized management. Advancing our understanding of these biomarkers and integrating them into clinical practice may lead to better prognostic capabilities and therapeutic outcomes in CRS patients.

References

1. Fokkens WJ, Lund VJ, Hopkins C, et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. *Rhinology*. 2020;58(Suppl 29):1-464.
2. Bachert C, Zhang N, Holtappels G, et al. Endotypes of chronic rhinosinusitis. *J Allergy Clin Immunol Pract*. 2016;4(4):575-581.
3. Stevens WW, Schleimer RP, Kern RC. Chronic rhinosinusitis with nasal polyps. *J Allergy Clin Immunol Pract*. 2016;4(4):565-572.
4. Lane AP. Chronic rhinosinusitis and the role of hypoxia. *Otolaryngol Clin North Am*. 2016;49(5):1025-1035.
5. Cho DY, Kim DW, Georas SN. Hypoxia and the epithelial barrier in chronic rhinosinusitis. *Int Forum Allergy Rhinol*. 2016;6(12):1247-1253.
6. Semenza GL. Oxygen sensing, homeostasis, and disease. *N Engl J Med*. 2011;365(6):537-547.
7. Liu Z, Kim DW, Suh L, et al. HIF-1 α regulates MUC5AC in nasal epithelial cells. *Am J Rhinol Allergy*. 2011;25(2):90-95.
8. Kim DW, Khalmuratova R, Hur DG, et al. VEGF mediates mucosal edema in CRS. *Clin Exp Allergy*. 2010;40(12):1727-1737.
9. Zhao Y, Yu X, Huang L, et al. Mucin production and hypoxia in chronic rhinosinusitis. *Am J Rhinol Allergy*. 2018;32(3):189-196.
10. Lee M, Kim DW. Tight junction proteins in nasal epithelium of CRS patients. *Laryngoscope*. 2015;125(5):E158-E164.
11. Tan BK, Klingler AI, Poposki JA, et al. Tight junctions and epithelial barrier function in chronic rhinosinusitis. *Front Immunol*. 2017;8:824.
12. Houser SM, Keen KJ, Phillips DE. DUOX2-mediated ROS production and its role in CRS. *Otolaryngol Head Neck Surg*. 2013;149(2):269-275.
13. Park HJ, Lee HM, Kim DW. Oxidative stress and chronic rhinosinusitis. *Allergy Asthma Immunol Res*. 2019;11(2):161-169.
14. Kang HR, Cho SJ, Lee CG, et al. HMGB1 in airway inflammation and remodeling. *Am J Respir Cell Mol Biol*. 2015;52(5):585-596.
15. Lu H, Wang C, Fu Z, et al. HMGB1 in chronic rhinosinusitis: role in inflammation and remodeling. *Clin Exp Allergy*. 2019;49(3):373-383.

16. Yakubov R.R., Yakubov R.K., Shaykhova H.E. The role of the pathology of the ENT organs in disturbing tissue respiration in children with secondary deforming osteoarthritis of the temporomandibular joint. *Integrative dentistry and maxillofacial surgery*. 2024;3(1):10-19.
<https://doi.org/10.57231/j.idmfs.2024.3.1.001>