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As Personal Aerial Mobility (PAM) and Electric Vertical Take-off and Landing (eVTOL)
aircraft are moving from just ideas to actual use, the reliance on fixed, pre-mapped
infrastructure poses a significant barrier to global scalability. In regions with low
infrastructure and harsh weather conditions such as Uzbekistan, the ability to perform
autonomous, unplanned landings is critical [1]. This research suggests a solid framework
for landing site selection and approach path generation, providing an innovative
infrastructure for autonomous air mobility. The methodology utilizes a geometric
filtering approach to process Digital Surface Models (DSM) and Digital Terrain Models
(DTM), extracting slope and obstacle data to generate a Safety Score Map. This map serves
as the cost-grid on A* search algorithm, ensuring a verifiable and optimal path to the
safest identified landing zone [1][3]. Throughout the research several contributions like
the development of a real-time autonomous scoring metric, dynamic route planning via
grid-based optimization, and sensing analytics for trustworthy decision-making in
unstructured environments is needed. Experimental evaluation within a high-fidelity
simulation environment demonstrates that this simple geometric approach achieves high
precision in obstacle avoidance and landing site accuracy, providing a transparent
alternative to complex, black-box deep learning systems [1][2].
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Introduction

In this day and age global transportation has
become one of the most critical topics for
discussion with Personal Aerial Mobility (PAM),
particularly Electric Vertical Take-off and
Landing (eVTOL) aircraft representing the next
frontier of innovation. However, a primary
barrier to the widespread adoption of PAM is
the current reliance on dedicated, pre-mapped
infrastructure, such as airports and specialized
helipads. This dependence restricts the utility of
eVTOL vehicles to highly developed urban
spaces, rendering them unusable in many
geographical regions that lack such structured
facilities [1]. The expansion of PAM on a global
scale demands the development of robust

autonomous landing systems capable of
operating in unstructured environments.
Currently, there is one significant technological
gap in this case: existing autonomous systems
often rely on high-complexity Deep Learning
architectures that require intensive onboard
computation, or they depend on highly
structured data, such as centimeter-accurate
GPS and pre-existing high-definition maps [2].
Such reliance creates single points of failure. If
the map is outdated or the GPS signal is
degraded, the vehicle cannot land safely in an
unplanned location [3]. This gap is particularly
common in regions from Central Asia. Countries
like Uzbekistan, Tajikistan, and Kazakhstan are
characterized by vast rural expanses, low

Eurasian Journal of Engineering and Technology

www.geniusjournals.org
Page | 26



Volume 47| December 2025

ISSN: 2795-7640

infrastructure density in remote areas, and
extreme climatic conditions, including high heat
and airborne dust [7]. In such environments,
visual-only sensors may be compromised by
low visibility, and pre-mapped data is often non-
existent. Therefore, a simple and
mathematically verifiable landing solution is
essential for the actual deployment of PAM in
these regions [1]. This research addresses a
critical central question: How can Personal
Aerial Vehicles autonomously evaluate and
select safe, unplanned landing sites and
generate a safe approach path using
geometrically simple and computationally
efficient methods? This study proposes a
framework that utilizes Digital Elevation
Models (DEM) to perform terrain analysis,
particularly the detection of slope and obstacle,
and integrates this with the A* search algorithm.
This combination aims to provide a transparent,
verifiable path-planning solution that remains
operational even when structured
infrastructure is unavailable [1][3].

Literature Review

The way drones and air vehicles land has
changed a lot over the years. Early methods
relied heavily on predefined visual markers,
such as "H" symbols or digital barcodes like
ArUco, which require pre-installation on the
ground. While this is simple, it doesn’t work for
emergency landings in a forest or a random field
where no markers exist. Modern vision-based
systems utilize onboard cameras to perceive the
environment in real-time. However, many
current versions rely on Deep Learning and
Convolutional Neural Networks (CNNs) to
classify terrain. While effective, these
approaches are often computationally heavy for
a vehicle's computer to run and act like a "black
box," making it hard to prove exactly why the
computer chose a specific spot - a big problem
for safety certification of Personal Air Vehicles
(PAVs) [1][2].

To find a safe spot without using complex Al, we
can use "geometric filtering." Instead of trying to
guess if the ground is grass or dirt, we look at
the actual shape of the land using 3D maps
called Digital Elevation Models (DEM). Previous
research has established that flatness can be
mathematically determined by calculating the

local slope and height variance across a grid
[2][3]- Specifically, by ana;yzing vertical
difference between a Digital Surface Model
(DSM), which shows the tops of everything like
trees and roofs, to a Digital Terrain Model
(DTM), which shows just the bare ground, the
system can distinguish between the true ground
and elevated obstacles like trees or buildings.
This geometric approach is advantageous
because it works across different lighting
conditions and textures, providing a reliable
"safety map" of the environment [1].

Once a landing spot is picked, the vehicle needs
a safe way to get there. For this, the research
utilizes the A* (A-star) algorithm - classic
computer science tool used for finding the best
path on a grid. A* is perfect for safety because it
is "complete" (it will always find a path if one
exists) and "optimal” (it finds the path with the
lowest cost). It uses a simple core formula:
f(n)=g(n)+h(n)

Where g(n) is the actual cost of the path so far,
and h(n) is an estimate of the cost to reach the
goal. By integrating our Safety Score Map into
the g(n) cost function, A* can mathematically
guarantee a flight path that prioritizes the safest
terrain over the shortest distance. In other
words, by making the "cost" higher for
dangerous areas (like steep hills or near
buildings), the algorithm automatically finds a
path that stays in the safest possible zones.
Even though there are many papers on landing
or path planning, few people have combined
these two specifically for large, passenger-
carrying vehicles in unstructured
environments. Most existing work focuses on
small UAVs where a minor collision comes with
a low risk. In contrast, passenger-carrying PAM
vehicles face unique constraints: they need
more room to land, have stricter rules about
how tilted the ground can be, and must operate
in adverse conditions where traditional
structured data (like perfect GPS) may fail. This
research fills that gap by combining simple
math with a transparent, optimal planning
algorithm designed specifically for the high-
stakes requirements of autonomous PAV
deployment [1][6].

Methodology
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Since crashing a real passenger vehicle is
expensive and dangerous, the research utilizes
AirSim Unreal Engine to test the system [4].
AirSim is a specialized simulator that acts like a
laboratory for autonomous vehicles. The
simulator generates essential sensor data,
including Digital Surface Models (DSM) and
Depth Maps (which show how far away objects
are). This allowed me to test how the vehicle
would react to different environments, like the
dusty or hot conditions found in Uzbekistan or
other countries from Central Asia, without
needing a physical drone [4].

Perception and Data Filtering

To "see" the ground, the system looks at 3D
elevation maps. It uses two main layers: the
Digital Surface Model (DSM), which includes all
objects such as trees and buildings, and the
Digital Terrain Model (DTM), which shows only
the bare ground [1].

To find obstacles the system subtracts the DTM
from the DSM. The result of DSM - DTM is known
as a Normalized Digital Surface Model (nDSM).
This represents the absolute height of objects
above the ground. The resulting nDSM is used to
isolate physical hazards from the safe landing
surface. To differentiate between harmless
ground variations and actual obstacles, a height
threshold is applied. For this research, any pixel
where the height difference exceeds 0.5 meters
is regarded as a hazardous obstacle and the
system marks it as a "no-go" zone [1].

Using a math tool called the Sobel operator, the
system calculates the "slope" of every pixel. If
the ground is too steep (tilted), it's not safe to
land [1][3]. The Sobel operator works by using
two 3*3 matrices (kernels) that look at the
pixels directly surrounding a center point. One
kernel measures the change in height in the
horizontal direction (Gx), and the other
measures the change in the vertical direction
(Gy) [2]. These two values are combined using
the Pythagorean theorem to find the overall
steepness (magnitude) at that spot:

G=sqrt Gx"2+Gy"2

This magnitude is then converted into a degree
angle. If the resulting angle is higher than the
safety threshold, let’s say 15 degrees, the
ground is considered too steep to support the

vehicle's landing gear without the risk of tipping
[1][3].

While the slope check tells us if the ground is
tilted, it doesn't always catch smaller dangers
like big rocks, small pits, or thick bushes. To fix
this, the system also calculates Height Variance
within each sliding window to measure
“roughness” [2]. The system looks at how much
each pixel in the window differs from the
average height. If the heights vary too much,
meaning the ground is “bumpy”, the variance
score goes up. For a Personal Air Vehicle (PAV),a
threshold is set: if the bumps are higher than 0.1
meters (10 cm), the spot is marked as too rough
to land on safely [2][4].

The Landing Site Scoring Metric (S)

The main part of this research is the Safety
Score. This is a formula that takes all the data
(slope, obstacles, and space) and turns it into
one “Safety Number” for every spot on the map.
S = wflat * f(Slope) + wobs * g(ObstacleDist) +
warea * h (ClearArea)

Where w stands for “weight”, f{(Slope) assigns a
higher value to regions with a gradient below
[1], g(ObstacleDist) rewards sites located
furthest from identified obstacles, h(ClearArea)
uses Connected Components Analysis to ensure
the flat region meets the minimum physical
dimensions required by the vehicle's landing
gear [1]. We need to give the most weight to
flatness because a tilted landing is the biggest
safety risk [1][2]. We set wflat = 0.5, wobs = 0.3,
and warea = 0.2. The final result is a heatmap
where bright spots are the safest and dark spots
are dangerous.

Path Planning Implementation (A*)

Once the system finds the safest spot, it needs to
find a way to get there. The research uses an 8-
connected A star algorithm for this [5]. A* is a
famous pathfinding tool that finds the
"cheapest” way to a goal. The Safety Heatmap is
turned into a Cost Grid. A spot with a low safety
score has a "high cost" as per the formula:
Cost(n)=1/S(n)

This forces the A* algorithm to find a path that
stays in the safest areas, even if it has to take a
longer route to avoid a building or a cliff [5].
Testing

Before testing, the list of thresholds needs to be
mentioned: slope has to be less than 15 degrees,

Eurasian Journal of Engineering and Technology

www.geniusjournals.org

Page | 28



Volume 47| December 2025

ISSN: 2795-7640

obstacle height needs to be more than 0.5m,
variance needs to be less than 0.1m.

The system is tested in two different "virtual
worlds":

First, in urban areas. A simple environment with
flat roads and clear houses. This was used to see

Visual Analysis

(a) Original/Urban

(¢) Baseling/Urban (50 runs

if the system could correctly ignore flat rooftops
and find the actual ground [1].

Then, in rural areas. A much harder
environment with steep hills, slopes exceeding
10 degrees, and lots of “noise” (like dust). This
was designed to simulate the rough conditions
in remote parts of Uzbekistan [1][4].

(b) Safety site Map

(c) A* Path visuliation

Tablie 1 (50 runs)  Melie 1 (50 runs)
Site Selection Accuracy 100% 100% Collision Siee Map 96% 58 ms
Collision Success Rate 100% 100% Collision Success Rate 98% 58 ms
Compuatation Time 45 ms 45 ms 4) ESRI: (0..n, maimm for calculating slope 101 ms

eutsim 80, 2019), & Aisaroretlagiony and

Simulation

After testing the system around 30 times in both
simulated environments, the results show that
using simple geometry is the safest and fastest
way.

In presented scenes, the vehicle “sees” a
complex neighborhood with trees, houses, and
uneven grass. After processing the depth data,

the system found a safe area to land. You can see
the "green" zones appearing on the flat, open
fields, while the houses and trees are marked
"red" (dangerous) [1]. Once the safest spot is
chosen, the A* algorithm draws a blue line.
Notice how the path doesn't just go in a straight
line; it curves to stay as far away from the "red"
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obstacles as possible to ensure maximum safety

[5]-

Performance Comparison

The numbers below summarize how the system
performed in the Urban and Rural scenarios.

Metric

Urban (Baseline)

Rural (Uzbekistan Sim)

Site Selection Accuracy 100% 96%
Collision Success Rate 100% 98%
Average Processing Time 45 ms 58 ms

In the Urban map, the system never failed to find
the safest spot. In the Rural map, the accuracy
dropped slightly to 96% because of the "noise"
and extreme slopes, but it still chose a safe
landing site every time [1][2]. What’s more, the
entire process (finding the spot + planning the
path) took less than 60 milliseconds. This means
the vehicle can update its "plan" 15-20 times
every second, which is plenty of time to react to
a sudden gust of wind or a moving obstacle [4].
Analysis of Metrics

The results of the experiment show a direct
correlation between the Slope Threshold and
the Collision Success Rate. During the
simulation, setting the threshold to 15 degrees
acted as a strict safety filter; however, in the
“Rural” scenario, we observed that a stricter
threshold (10 degrees for example) actually
improved the success rate by providing a larger
margin for error during the final descent phase.
Despite the simulated dust and sensor noise in
the rural Uzbekistan scenario, the simple
geometric approach remained relatively
consistent. Because the system relies on relative
height differences (nDSM) and gradient
calculations rather than visual textures or
colors, it was not "fooled" by the lack of clear
landmarks or shifting lighting conditions. While
Deep Learning might struggle with the "visual

noise" of a dust storm, our geometric kernel
simply sees the physical structure of the ground,
proving that a simpler mathematical foundation
can be more reliable in extreme environments
[1][4].

Discussion and Limitations

Of course, this project has some limits that need
to be mentioned. First, everything was done in a
simulation (AirSim). Even though the physics
are very realistic, the real world has things like
sudden wind gusts or "ground effect" (air
pushing back as you get close to the ground)
that weren't perfectly modeled here. Also, the
Safety Score (S) would need '"real-world
tuning." I picked the weights for flatness and
obstacles based on what worked in the
simulator, but a real passenger vehicle might
need different settings depending on its weight
or how its landing legs are built. Being honest
about these limits is part of making the research
professional.

Conclusion

This research shows that you don't need a
massive supercomputer or perfect maps to land
a Personal Air Vehicle safely. By creating a
Safety Score Map (S) and using the A* algorithm
to find a path, we’'ve built a system that is
lightweight (it doesn't need much computer
power), verifiable (we can see exactly why it
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chose a path), and practical (it works in places
like rural Uzbekistan where there aren't many
landing pads or good maps [1].)

Summary and Next Steps

[ successfully built a pipeline that finds
obstacles, scores the ground for safety, and
plans a clear path to the best spot. The next
logical step for this research would be to try this
code on a small, real-life test drone. [ also think
adding a simple Al just to identify different
types of plants (like tall grass vs. solid bushes)
would make the safety score even better.
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