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Introduction  
In this day and age global transportation has 
become one of the most critical topics for 
discussion with Personal Aerial Mobility (PAM), 
particularly Electric Vertical Take-off and 
Landing (eVTOL) aircraft representing the next 
frontier of innovation. However, a primary 
barrier to the widespread adoption of PAM is 
the current reliance on dedicated, pre-mapped 
infrastructure, such as airports and specialized 
helipads. This dependence restricts the utility of 
eVTOL vehicles to highly developed urban 
spaces, rendering them unusable in many 
geographical regions that lack such structured 
facilities [1]. The expansion of PAM on a global 
scale demands the development of robust 

autonomous landing systems capable of 
operating in unstructured environments. 
Currently, there is one significant technological 
gap in this case: existing autonomous systems 
often rely on high-complexity Deep Learning 
architectures that require intensive onboard 
computation, or they depend on highly 
structured data, such as centimeter-accurate 
GPS and pre-existing high-definition maps [2]. 
Such reliance creates single points of failure. If 
the map is outdated or the GPS signal is 
degraded, the vehicle cannot land safely in an 
unplanned location [3]. This gap is particularly 
common in regions from Central Asia. Countries 
like Uzbekistan, Tajikistan, and Kazakhstan are 
characterized by vast rural expanses, low 
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As Personal Aerial Mobility (PAM) and Electric Vertical Take-off and Landing (eVTOL) 
aircraft are moving from just ideas to actual use, the reliance on fixed, pre-mapped 
infrastructure poses a significant barrier to global scalability. In regions with low 
infrastructure and harsh weather conditions such as Uzbekistan, the ability to perform 
autonomous, unplanned landings is critical [1]. This research suggests a solid framework 
for landing site selection and approach path generation, providing an innovative 
infrastructure for autonomous air mobility. The methodology utilizes a geometric 
filtering approach to process Digital Surface Models (DSM) and Digital Terrain Models 
(DTM), extracting slope and obstacle data to generate a Safety Score Map. This map serves 
as the cost-grid on A* search algorithm, ensuring a verifiable and optimal path to the 
safest identified landing zone [1][3]. Throughout the research several contributions like 
the development of a real-time autonomous scoring metric, dynamic route planning via 
grid-based optimization, and sensing analytics for trustworthy decision-making in 
unstructured environments is needed. Experimental evaluation within a high-fidelity 
simulation environment demonstrates that this simple geometric approach achieves high 
precision in obstacle avoidance and landing site accuracy, providing a transparent 
alternative to complex, black-box deep learning systems [1][2]. 
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infrastructure density in remote areas, and 
extreme climatic conditions, including high heat 
and airborne dust [7]. In such environments, 
visual-only sensors may be compromised by 
low visibility, and pre-mapped data is often non-
existent. Therefore, a simple and 
mathematically verifiable landing solution is 
essential for the actual deployment of PAM in 
these regions [1]. This research addresses a 
critical central question: How can Personal 
Aerial Vehicles autonomously evaluate and 
select safe, unplanned landing sites and 
generate a safe approach path using 
geometrically simple and computationally 
efficient methods? This study proposes a 
framework that utilizes Digital Elevation 
Models (DEM) to perform terrain analysis, 
particularly the detection of slope and obstacle, 
and integrates this with the A* search algorithm. 
This combination aims to provide a transparent, 
verifiable path-planning solution that remains 
operational even when structured 
infrastructure is unavailable [1][3]. 
Literature Review 
The way drones and air vehicles land has 
changed a lot over the years. Early methods 
relied heavily on predefined visual markers, 
such as "H" symbols or digital barcodes like 
ArUco, which require pre-installation on the 
ground. While this is simple, it doesn’t work for 
emergency landings in a forest or a random field 
where no markers exist. Modern vision-based 
systems utilize onboard cameras to perceive the 
environment in real-time. However, many 
current versions rely on Deep Learning and 
Convolutional Neural Networks (CNNs) to 
classify terrain. While effective, these 
approaches are often computationally heavy for 
a vehicle's computer to run and act like a "black 
box," making it hard to prove exactly why the 
computer chose a specific spot - a big problem 
for safety certification of Personal Air Vehicles 
(PAVs) [1][2].   
To find a safe spot without using complex AI, we 
can use "geometric filtering." Instead of trying to 
guess if the ground is grass or dirt, we look at 
the actual shape of the land using 3D maps 
called Digital Elevation Models (DEM). Previous 
research has established that flatness can be 
mathematically determined by calculating the 

local slope and height variance across a grid 
[2][3]. Specifically, by ana;yzing vertical 
difference between a Digital Surface Model 
(DSM), which shows the tops of everything like 
trees and roofs, to a Digital Terrain Model 
(DTM), which shows just the bare ground, the 
system can distinguish between the true ground 
and elevated obstacles like trees or buildings. 
This geometric approach is advantageous 
because it works across different lighting 
conditions and textures, providing a reliable 
"safety map" of the environment [1].  
Once a landing spot is picked, the vehicle needs 
a safe way to get there. For this, the research 
utilizes the A* (A-star) algorithm - classic 
computer science tool used for finding the best 
path on a grid. A* is perfect for safety because it 
is "complete" (it will always find a path if one 
exists) and "optimal" (it finds the path with the 
lowest cost). It uses a simple core formula:  
f(n)=g(n)+h(n) 
Where g(n) is the actual cost of the path so far, 
and h(n) is an estimate of the cost to reach the 
goal. By integrating our Safety Score Map into 
the g(n) cost function, A* can mathematically 
guarantee a flight path that prioritizes the safest 
terrain over the shortest distance. In other 
words, by making the "cost" higher for 
dangerous areas (like steep hills or near 
buildings), the algorithm automatically finds a 
path that stays in the safest possible zones.  
Even though there are many papers on landing 
or path planning, few people have combined 
these two specifically for large, passenger-
carrying vehicles in unstructured 
environments. Most existing work focuses on 
small UAVs where a minor collision comes with 
a low risk. In contrast, passenger-carrying PAM 
vehicles face unique constraints: they need  
more room to land, have stricter rules about 
how tilted the ground can be, and must operate 
in adverse conditions where traditional 
structured data (like perfect GPS) may fail. This 
research fills that gap by combining simple 
math with a transparent, optimal planning 
algorithm designed specifically for the high-
stakes requirements of autonomous PAV 
deployment [1][6].  
 
Methodology 
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Since crashing a real passenger vehicle is 
expensive and dangerous, the research utilizes 
AirSim Unreal Engine to test the system [4]. 
AirSim is a specialized simulator that acts like a 
laboratory for autonomous vehicles. The 
simulator generates essential sensor data, 
including Digital Surface Models (DSM) and 
Depth Maps (which show how far away objects 
are). This allowed me to test how the vehicle 
would react to different environments, like the 
dusty or hot conditions found in Uzbekistan or 
other countries from Central Asia, without 
needing a physical drone [4].  
Perception and Data Filtering 
To "see" the ground, the system looks at 3D 
elevation maps. It uses two main layers: the 
Digital Surface Model (DSM), which includes all 
objects such as trees and buildings, and the 
Digital Terrain Model (DTM), which shows only 
the bare ground [1].  
To find obstacles the system subtracts the DTM 
from the DSM. The result of DSM - DTM is known 
as a Normalized Digital Surface Model (nDSM). 
This represents the absolute height of objects 
above the ground. The resulting nDSM is used to 
isolate physical hazards from the safe landing 
surface. To differentiate between harmless 
ground variations and actual obstacles, a height 
threshold is applied. For this research, any pixel 
where the height difference exceeds 0.5 meters 
is regarded as a hazardous obstacle and the 
system marks it as a "no-go" zone [1].   
Using a math tool called the Sobel operator, the 
system calculates the "slope" of every pixel. If 
the ground is too steep (tilted), it’s not safe to 
land [1][3]. The Sobel operator works by using 
two 3*3 matrices (kernels) that look at the 
pixels directly surrounding a center point. One 
kernel measures the change in height in the 
horizontal direction (Gx), and the other 
measures the change in the vertical direction 
(Gy) [2]. These two values are combined using 
the Pythagorean theorem to find the overall 
steepness (magnitude) at that spot:  
G=sqrt Gx^2+Gy^2 
This magnitude is then converted into a degree 
angle. If the resulting angle is higher than the 
safety threshold, let’s say 15 degrees, the 
ground is considered too steep to support the 

vehicle's landing gear without the risk of tipping 
[1][3].  
While the slope check tells us if the ground is 
tilted, it doesn't always catch smaller dangers 
like big rocks, small pits, or thick bushes. To fix 
this, the system also calculates Height Variance 
within each sliding window to measure 
“roughness” [2]. The system looks at how much 
each pixel in the window differs from the 
average height. If the heights vary too much, 
meaning the ground is “bumpy”, the variance 
score goes up. For a Personal Air Vehicle (PAV),a 
threshold is set: if the bumps are higher than 0.1 
meters (10 cm), the spot is marked as too rough 
to land on safely [2][4]. 
The Landing Site Scoring Metric (S) 
The main part of this research is the Safety 
Score. This is a formula that takes all the data 
(slope, obstacles, and space) and turns it into 
one “Safety Number” for every spot on the map.  
S = wflat * f(Slope) + wobs * g(ObstacleDist) + 
warea * h (ClearArea)  
Where w stands for “weight”, f(Slope) assigns a 
higher value to regions with a gradient below 
[1], g(ObstacleDist) rewards sites located 
furthest from identified obstacles, h(ClearArea) 
uses Connected Components Analysis to ensure 
the flat region meets the minimum physical 
dimensions required by the vehicle's landing 
gear [1]. We need to give the most weight to 
flatness because a tilted landing is the biggest 
safety risk [1][2]. We set wflat = 0.5, wobs = 0.3, 
and warea = 0.2. The final result is a heatmap 
where bright spots are the safest and dark spots 
are dangerous.  
Path Planning Implementation (A*) 
Once the system finds the safest spot, it needs to 
find a way to get there. The research uses an 8-
connected A star algorithm for this [5]. A* is a 
famous pathfinding tool that finds the 
"cheapest" way to a goal. The Safety Heatmap is 
turned into a Cost Grid. A spot with a low safety 
score has a "high cost" as per the formula: 
Cost(n)=1/S(n) 
This forces the A* algorithm to find a path that 
stays in the safest areas, even if it has to take a 
longer route to avoid a building or a cliff [5]. 
Testing  
Before testing, the list of thresholds needs to be 
mentioned: slope has to be less than 15 degrees, 
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obstacle height needs to be more than 0.5m, 
variance needs to be less than 0.1m.  
The system is tested in two different "virtual 
worlds": 
First, in urban areas. A simple environment with 
flat roads and clear houses. This was used to see 

if the system could correctly ignore flat rooftops 
and find the actual ground [1]. 
Then, in rural areas. A much harder 
environment with steep hills, slopes exceeding 
10 degrees, and lots of “noise” (like dust). This 
was designed to simulate the rough conditions 
in remote parts of Uzbekistan [1][4]. 

 

Visual Analysis 

 

After testing the system around 30 times in both 
simulated environments, the results show that 
using simple geometry is the safest and fastest 
way.  
In presented scenes, the vehicle “sees” a 
complex neighborhood with trees, houses, and 
uneven grass. After processing the depth data, 

the system found a safe area to land. You can see 
the "green" zones appearing on the flat, open 
fields, while the houses and trees are marked 
"red" (dangerous) [1]. Once the safest spot is 
chosen, the A* algorithm draws a blue line. 
Notice how the path doesn't just go in a straight 
line; it curves to stay as far away from the "red" 
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obstacles as possible to ensure maximum safety 
[5]. 

The numbers below summarize how the system 
performed in the Urban and Rural scenarios.  

 

Performance Comparison 

Metric Urban (Baseline) Rural (Uzbekistan Sim) 

Site Selection Accuracy 100% 96% 

Collision Success Rate 100% 98% 

Average Processing Time 45 ms 58 ms 

In the Urban map, the system never failed to find 
the safest spot. In the Rural map, the accuracy 
dropped slightly to 96% because of the "noise" 
and extreme slopes, but it still chose a safe 
landing site every time [1][2]. What’s more, the 
entire process (finding the spot + planning the 
path) took less than 60 milliseconds. This means 
the vehicle can update its "plan" 15–20 times 
every second, which is plenty of time to react to 
a sudden gust of wind or a moving obstacle [4]. 
Analysis of Metrics 
The results of the experiment show a direct 
correlation between the Slope Threshold and 
the Collision Success Rate. During the 
simulation, setting the threshold to 15 degrees 
acted as a strict safety filter; however, in the 
“Rural” scenario, we observed that a stricter 
threshold (10 degrees for example) actually 
improved the success rate by providing a larger 
margin for error during the final descent phase. 
Despite the simulated dust and sensor noise in 
the rural Uzbekistan scenario, the simple 
geometric approach remained relatively 
consistent. Because the system relies on relative 
height differences (nDSM) and gradient 
calculations rather than visual textures or 
colors, it was not "fooled" by the lack of clear 
landmarks or shifting lighting conditions. While 
Deep Learning might struggle with the "visual 

noise" of a dust storm, our geometric kernel 
simply sees the physical structure of the ground, 
proving that a simpler mathematical foundation 
can be more reliable in extreme environments 
[1][4].  
Discussion and Limitations 
Of course, this project has some limits that need 
to be mentioned. First, everything was done in a 
simulation (AirSim). Even though the physics 
are very realistic, the real world has things like 
sudden wind gusts or "ground effect" (air 
pushing back as you get close to the ground) 
that weren't perfectly modeled here. Also, the 
Safety Score (S) would need "real-world 
tuning." I picked the weights for flatness and 
obstacles based on what worked in the 
simulator, but a real passenger vehicle might 
need different settings depending on its weight 
or how its landing legs are built. Being honest 
about these limits is part of making the research 
professional. 
Conclusion 
This research shows that you don't need a 
massive supercomputer or perfect maps to land 
a Personal Air Vehicle safely. By creating a 
Safety Score Map (S) and using the A* algorithm 
to find a path, we’ve built a system that is 
lightweight (it doesn't need much computer 
power), verifiable (we can see exactly why it 
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chose a path), and practical (it works in places 
like rural Uzbekistan where there aren't many 
landing pads or good maps [1].) 
Summary and Next Steps 
I successfully built a pipeline that finds 
obstacles, scores the ground for safety, and 
plans a clear path to the best spot. The next 
logical step for this research would be to try this 
code on a small, real-life test drone. I also think 
adding a simple AI just to identify different 
types of plants (like tall grass vs. solid bushes) 
would make the safety score even better.  
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