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Critical buckling moment is a fundamental property of the flexural resistance of laterally 
unsupported steel beams. In principle, it is easy to calculate the fundamental critical 
buckling moment (critical buckling moment for simply supported steel beams with 
doubly symmetric cross-section subjected to uniform moment). Still, the actual elastic 
critical moment strongly depends on both the bending moment distribution and 
restrictions at end supports. Standards estimate the actual critical buckling moment as a 
multiplier "Moment Gradient Factor" of the fundamental critical buckling moment as 
what was thought as the most severe case. It is believed that the fundamental critical 
moment is the minimum critical case for these reasons. First, researchers thought that 
the fundamental critical moment is the most severe case because studies find that if the 
moment gradient factor equals one, it tends to be conservative. second, the fundamental 
critical moment is not more than actual critical moment under a linear moment, 
distributed load, and concentrated loads. To the authors’ knowledge, no study finds cases 
where the actual critical LTB is less than the critical buckling moment of uniform bending 
moments due to variation in moment diagram and boundary condition. 
This paper studies if the fundamental moment is the minimum critical case by 
investigating the lateral torsional buckling of twenty representative I-shaped beams 
subjected to an intermediate moment and two inverted loads with different in-plane and 
out-of-plane boundary conditions. The actual critical moments are determined 
numerically using LTBeam and ANSYS, free and commercial software, respectively. The 
results prove that the fundamental moment is not the minimum critical case under 
specific loading conditions and show the need to study the cases of critical buckling 
moments that led to moment gradient factor values of less than one. Further work is 
required to find cases like this and apply the same loading pattern on single symmetric 
and cold formed sections to provide a suitable moment gradient factor formula. 
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Introduction 
Structural stability has been a major consideration for as long as steel constructions have existed. The 
importance of having a good understanding of and implementing the proper member stability checks 
is growing as computer programs are used more and more in the design of structures. For this reason, 
it is important to understand the in-plane strength and stiffness response to loadings for steel beams. 
However, other actions might occur for laterally unrestrained beams when the compression flange is 
subjected to flexural compression stress (Fig. 1), causing lateral-torsional buckling (abbreviated as 
LTB) under small loads. In such cases, failure occurs due to instability, and such failure is of elastic 
nature. The direction of lateral movement is determined by the existing initial imperfection of the 
unloaded beam.  
Consequently, lateral-torsional buckling affects the design of unrestrained beams and beam-column. In 
the present study, the fundamental critical moment is defined as the critical buckling moment for a 
simply supported steel beam with a doubly symmetric cross-section subjected to a uniform moment. 
The fundamental moment causing instability can be obtained using the small deflection theory, as 
follows [1]: 

 𝑴𝒇𝒖𝒏𝒅𝒂𝒎𝒆𝒏𝒕𝒂𝒍 =  
𝝅𝟐𝑬𝑰𝒛

(𝒌𝑳)𝟐 [√(
𝒌

𝒌𝒘
)

𝟐 𝑰𝒘

𝑰𝒛
+  

(𝒌𝑳)𝟐𝑮𝑰𝒕

𝝅𝟐𝑬𝑰𝒛
]      (1) 

This equation calculates the fundamental critical moments for a beam with fork support by setting 
𝒌 = 𝒌𝒘 = 1. Also, it calculates the fundamental critical moments for beams restrained at ends against 
lateral bending (weak-axis bending) and warping by modifying 𝒌  and 𝒌𝒘 factors, as shown afterwards. 
It is worth mentioning that the critical buckling moment for unsymmetrical and single symmetrical 
sections is out of the scope of this study. For this study, the load is applied on the shear center. 

 
Fig. 1: Lateral Torsional Buckling of a Steel Beam. 

In real cases, lateral–torsional buckling is greatly affected by moment, and it was thought that they 
always provide a higher critical buckling moment. Thus, actual critical LTB can be evaluated using the 
approximate numerical expressions[2][3] or the Potential Energy Method [4]. However, for practical 
reasons, consideration of the bending moment diagram is considered by means of the equivalent 
uniform moment factor, also called the moment gradient correction factor. The fundamental elastic 
critical moment of the simply supported beam with uniform moment  𝑀𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙  is multiplied by this 

factor to obtain the actual critical LTB for any bending moment diagram. It was thought that this factor 
is always greater than 1.0 for a varying bending moment diagram [5]. In this section, the critical lateral- 
torsional buckling moment is proposed by some steel design standards, as follows: 

1.1  AISC360-16  
The elastic critical lateral-torsional buckling moment is expressed as follows [6][7]: 

𝐌𝐜𝐫 =  𝐅𝐜𝐫𝐒𝐱          (2) 

Where: 
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𝑭𝒄𝒓 =  
𝑪𝒃𝝅𝟐𝑬

(
𝑳𝒃
𝒓𝒕𝒔

)
𝟐 [√𝟏 + 𝟎. 𝟎𝟕𝟖 

𝑱𝒄

𝑺𝒙𝒉𝒐
(

𝑳𝒃

𝒓𝒕𝒔
)

𝟐
]       (3) 

Where  𝐿𝑏 is the unbraced lateral displacement or twisting length,  𝑆𝑥 is the elastic section modulus 
about major axe,  ℎ𝑜 is the flange centroid distance, and 𝑟𝑡𝑠 is obtained through the expression: 

𝒓𝒕𝒔 = (
√𝑰𝒚𝑪𝒘

𝑺𝒙
)

𝟎.𝟓

         (4) 

This equation is identical to the critical buckling moment expression, included in earlier AISC editions 
[7], which is expressed by: 

𝑴𝒄𝒓 = 𝑪𝒃
𝝅

𝑳𝒃

√𝑬𝑰𝒚𝑮𝑱 +  (
𝝅𝑬

𝑳𝒃
)

𝟐
𝑰𝒚𝑪𝒘      (5) 

The modification factor Cb is used to adjust the critical buckling moment according to the variation in 
the moment diagram. 

1.2 Eurocode 3 
This code refers to the European EN-1993-1-1:2005 standard. The capacity of a member subjected to 
lateral- torsional buckling is reduced by a reduction factor, namely  𝑋 as shown below[8]: 

𝜒𝐿𝑇 =  
1

𝜙𝐿𝑇+ √𝜙𝐿𝑇
2 − �̅�𝐿𝑇

2
 , 𝑏𝑢𝑡  𝜒𝐿𝑇 ≤ 1.0,  𝜒𝐿𝑇 ≤

1.0

�̅�𝐿𝑇
2      (6) 

𝜙𝐿𝑇 = 0.5 (1 +  𝛼𝐿𝑇(�̅�𝐿𝑇 − 0.2) + �̅�𝐿𝑇
2 )       (7) 

The slenderness parameter, 𝜆′, is inversely proportional to √𝑀𝑐𝑟 

�̅�𝐿𝑇 =  √
𝑊𝑦𝑓𝑦

𝑀𝑐𝑟
          (8) 

The 3-factor formula expression is used to calculate critical moment in early Eurocode editions, but it 
is not included in the current code. Recently, the formula has been included in Design Guideline ECCS 
TC 8 [9] and other specifications, such as the Polish Standard [10]. The equation has three correction 
factors added to the reference case Eq. (1), as follows: 

𝑀𝑐𝑟 =  𝐶1
𝜋2 𝐸 𝐼𝑍

(𝑘𝑧 𝐿)2 [(√(
𝑘𝑧

𝑘𝑤
)

𝐼𝑤

𝐼𝑧
+

(𝑘𝑧 𝐿)2 𝐺𝐼𝑡

𝜋2 𝐸 𝐼𝑧
+ (𝐶2𝑧𝑔)

2
) − (𝐶2𝑧𝑔 −  𝐶3𝑧𝑗)]   (9) 

Where 𝐶1 is the moment gradient correction factor, 𝐶2 is the correction factor related to the location of 
the applied load, and C3 is the correction factor related to asymmetry about the minor axis. Factor kzis 
the effective length factor of lateral bending, and factor kw is the effective length factor of end warping. 
This equation is equivalent to the AISC expression if 𝐶2 and 𝐶3 are taken equal to zero; the only 
difference is the notation, and it can be concluded that moment gradient factor 𝐶𝑏 and equivalent 
uniform moment factor 𝐶1 are identical for doubly symmetric members loaded at the shear center. 
It is worth mentioning that most studies to estimate  𝐶𝑏  focus on linear moment distribution, 
concentrated load, two concentrated equal loads, concentrated load with one or two end moments, and 
uniform loading with one or two end moments [1][9]. For all these cases, the actual critical buckling 
moment 𝑀𝑐𝑟 is always greater than the fundamental critical moment  𝑀𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 . Moreover, it was 

believed that the uniform moment distribution is the most severe case [5] [18] [16] [19] [20], which 
suggests that if the moment gradient factor equals one, it tends to be conservative. Since no cases have 
been previously studied in which the actual critical moments are less than the fundamental moment 
due to the moment distribution along the beams, the study will move to the methodology used to tackle 
whether this belief is always true. 

2. Numerical Modeling of Lateral Torsional Buckling 
So far, Finite Element [14] and Finite Difference techniques remain the best choices to study the lateral-
torsional buckling phenomenon. Two different programs (i.e., LTBeam and ANSYS) are utilized in this 
study to solve the LTB problem. A brief explanation for their application to estimate Mcr is presented 
as follows. 

2.1 LTBeam 
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 This study uses a finite element-based program (LTBeam) to calculate the critical buckling moment of 
beams by modelling beams as shell elements and solving the classic eigenvalue problem using an 
iterative process. The program is based on the Vlasov thin-walled beam theory, which assumes that the 
section does not distort in its plane and that shear deformations are negligible. Under these 
assumptions, it is well-established that the critical moment for the fundamental case is the lowest 
possible. The program was developed in collaboration between CTICM and the European Community 
for Steel and Coal. Users can download and install the program for free. The program is recommended 
in previous studies [1], [13][16] [20], and validated with other FEM programs and references [17].  

2.2 ANSYS 
It is possible to perform lateral torsional buckling analysis using ANSYS software through eigenvalue 
analysis, also known as buckling analysis. Since ANSYS is generic finite element software, the boundary 
conditions are not pre-defined as in LTBeam software, so it is required to implement loads and 
boundary conditions in the finite element model. 
Fork support is implemented as illustrated in Fig. 1 (a), (b), and (c). For beams restrained against lateral 
bending and warping, remote displacement boundary conditions are implemented, as illustrated in Fig. 
1 (d), to force the slave nodes to move with the master node for the coupled degrees-of-freedom 
specified by the user. 

  

  
Fig. 2: Restrained Boundary Conditions (a) Vertical Displacement (b) Longitudinal Displacement (c) Torque and 

Lateral Displacement (d) Lateral Bending and Warping 

Finite elements (SHELL 181) are used for modelling flange and web elements, and beam elements 
(BEAM 189) are used at support and loads locations to avoid any artificial localized effects under point 
loads/moments/reactions that will not take place in actual construction details (which inevitably 
distribute all "point" loads on some area of the cross-section), this element is added at web and having 
cross-section equal to web thickness.  

2.3 Validation  
The study validates (LTBeam) and ANSYS FEM with the fundamental critical moment 𝑀𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙  for 

the cases studied in the next section so that they will be mentioned there. Currently, the study verifies 
the moment gradient factor calculated by (LTBeam) and ANSYS FEM with the potential energy formulas 
developed by Trahair [3], results obtained from the potential energy method by Yoo et al.[4], and well-
known moment factors [1] for the following load cases Fig. 3 : 

1. Concentrated load and one end moment. 
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2. Linear moment distribution. 
3. Uniformly distributed load and one end moment. 

The moment gradient factor is calculated using the finite element method in the following way: The 
fundamental critical moment 𝑀𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙  is calculated using equation (10), and 𝑀𝑐𝑟 is calculated using 

LTBeam and ANSYS programs. Hence, equation (9) can be expressed as:  

𝑀𝑐𝑟 = 𝐶1  𝑀𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 = 𝐶1
𝜋 

𝑘𝑧 𝐿
√𝐸 𝐼𝑦𝐺 𝐽 +  

1

𝑘𝑧𝑘𝑤
(

𝜋 𝐸

𝐿
)

2

𝐼𝑦𝐶𝑤    (11) 

Since the actual critical moment 𝑀𝑐𝑟 and the fundamental 𝑀𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙   are known, the moment 

gradient factor is determined using the expression: 

𝐶𝑏 =  𝐶1 =
𝑀𝑐𝑟

𝑀𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙
         (12) 

2.4 Comparison and Discussion 
Fig. 4, Fig. 5, and Error! Reference source not found. show that the results obtained from (LTBeam) 
and ANSYS are close to the potential energy formulas. However, in most cases, it is noted that when 
attempting to model the given problems using a shell element in (ANSYS) program, the results are a few 
per cent lower than that based on a thin-walled beam element in (LTBeam) program. The reason is 
attributed to cross-sectional distortion, which is captured in shell analysis but omitted in thin-walled 
beam analysis based on the Vlasov theory. For this reason, the critical 𝑀𝐹𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙  estimated from 
shell finite element analysis (ANSYS) is employed in the study besides theoretical𝑀𝐹𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 . 
On the other hand, (LTBeam) and ANSYS results conform with the results obtained from the potential 
energy method by Yoo et al.[4] and well-known moment factors [1] as shown in Error! Reference 
source not found. It is worth mentioning that the Yoo and Lee factor regarding the beam subjected to 
a concentrated load at mid-span is similar to Trahair equation for the first case with end moments equal 
to zero. However, there is a slight difference between the findings (1.35 from Trahair equation and 1.36 
from Yoo and Lee), while (LTBeam) and ANSYS results reached 1.36.  
The general conclusion drawn from the above-mentioned comparative analysis is that there is good 
accordance between the moment gradient factor determined by the potential energy method, well-
known formulas, and FEM results. Furthermore, the reliability of LTBeam and ANSYS seems quite 
reasonable.  
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Fig. 3: Verification load Cases. 

 
Fig. 4: Moment Factor Verification for Case (1). 
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Fig. 5: Moment Factor Verification for Case (2). 

 
Fig. 6: Moment Factor Verification for Case (3). 

 
Table 1: Verify LTBeam and ANSYS Results with Yoo et al. Method &Well-Known Moment Gradient Factors 

Loading 
Support 

Conditions 
Yoo& 
Lee 

NCC
I 

FEM 
LTBea

m 

FEM 
ANSY

S 

Uniform bending 
 

1 1 1 1 

Uniformly distributed load 

 

1.13 
1.12
7 

1.13 1.134 

 

- 
2.57
8 

2.61 2.423 

Concentrated load at mid-span 

 

1.36 
1.34
8 

1.363 1.364 

 

- 
1.68
3 

1.725 1.671 

Concentrated loads at the third 
points 

 

1.04 - 1.09  

3. Case Study  
The study investigates the critical buckling moment for beams subjected to intermediate moment and 
two reversed loads through the following steps (Fig. 7): 

1- Calculate the 𝑀𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙  “critical buckling moment for simply supported steel beams with 

doubly symmetric cross-section subjected to uniform moment” for a beam with specific length, 
cross-section, and different lateral bending and warping end conditions; 

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 0.2 0.4 0.6 0.8 1
η

Trahair

LtBeam

ANSYS
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2- Calculate the actual critical LTB 𝑀𝑐𝑟 for the beam mentioned above under an intermediate 
moment and two reversed loads with different end conditions. 

3- Track cases where the  𝑀𝑐𝑟 is less than 𝑀𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙  

Four steel sections are employed in this study. 
(1) The first section is a built-up section with the same depth, width, flange thickness, and web 

thicknesses as (IPE300) profile without radius at flange-to-web junction. Following are the 
section properties of the simplified IPE300 section: 𝐼𝑧 = 602.71 𝑐𝑚4, 𝐼𝑡 = 15.222 𝑐𝑚4, 𝐼𝑤 =
126108 𝑐𝑚6, and the span of the beam is 5000 mm.  

(2) The second section is a built-up section with the same depth, width, flange thickness, and web 
thicknesses as (HEA300) profile without radius at flange-to-web junction. Following are the 
section properties of the simplified HEA300 section: 𝐼𝑧 = 6301.3 𝑐𝑚4, 𝐼𝑡 = 59.085 𝑐𝑚4, 𝐼𝑤 =
1.200𝐸 + 06 𝑐𝑚6, and the span of the beam is 10000 mm. 

(3) The third section is a built-up section with the same depth, width, flange thickness, and web 
thicknesses as (HEB240) profile without radius at flange-to-web junction. Following are the 
section properties of the simplified HEB240 section: 𝐼𝑧 = 3918.5 𝑐𝑚4, 𝐼𝑡 = 82.871 𝑐𝑚4, 𝐼𝑤 =
487160 𝑐𝑚6, and the span of the beam is 10000 mm. 

(4) The fourth section is a built-up section with a total depth of 300 mm, web thickness of 8 mm, 
flange width of 150 mm, and flange thickness of 8 mm. This section is designed to have a buckling 
length bigger than the elastic critical (LTB) as discussed below. Following are the section 
properties of the I300×8-150×8 section: 𝐼𝑧 = 3918.5 𝑐𝑚4, 𝐼𝑡 = 82.871 𝑐𝑚4, 𝐼𝑤 = 487160 𝑐𝑚6, 
and the span of the beam is 5000 mm. 

Material properties for steel sections are E= 200000 Mpa, υ= 0.3, G= 76923 Mpa, steel grade is A36. 
All sections satisfy these conditions:  

(A) The beams are restrained at ends only,  
(B) Steel sections are subjected to (LTB) since the buckling length Lb exceeds the unrestrained 

critical length corresponding to the plastic bending moment Lp, where Lp  is expressed in 

ANSI/AISC 360-16 as: 

𝐿𝑝 = 1.76 𝑖𝑦 √𝐸
𝑓𝑦

⁄          (13) 

(C) Flange local buckling and compression flange yielding will not occur since the steel sections have 
compact flanges and webs, as defined in ANSI/AISC 360-16.  

(D) The slenderness ratio of the minor axe is less than 200. See Table 2. 
It is worth mentioning that there is another critical unrestrained length 𝐿r which is the length when 
elastic lateral–torsional buckling occurs 

𝐿𝑟 = 1.95 𝑟𝑡𝑠  
𝐸

0.7 𝑓𝑦
 √

𝐼𝑡

𝑆𝑥 ℎ0
 √1 +  √1 + 6.76 (

0.7 𝑓𝑦

𝐸
  ×  

𝑆𝑥 ℎ0 

𝐼𝑡
)

2

    (14) 

Consequently, it is important to compare critical unrestrained lengths “𝐿𝑝, 𝑎𝑛𝑑 𝐿𝑝" with the buckling 

length of beams. The buckling length Lb is more than the critical unbraced length for the limit state of 
yielding 𝐿𝑝 for all sections, but the buckling length Lb is less than the elastic critical buckling length Lr 

for simplified IPE300, HEA300, and HEB200 sections. For this reason, the fourth section I300×8-150×8 
is employed here, where the buckling length is more than Lr. It can be concluded from Table 2 that cases 
Lp <  Lb  ≤  Lr and Lb >  Lr are employed in the study. It is also concluded that the nominal flexural 

strength Mn is governed by the (LTB) Mcr because 
Mcr

Mp
 is less than one, where Mp is the Nominal flexural 

strength due to plastic bending moment as per AISC360-16 specifications. 
Table 2 𝑳𝒓, 𝑳𝒑, 𝐌𝐜𝐫, 𝐌𝐏 for sections 

Beam Lb Lp Lr Lb/Lp Lb/Lr Mp Mcr Mcr/Mp λy 
(m) (m) (m)     (kN.m) (kN.m)     
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IPE300 5 1.7 5.36 294.1% 93.3% 149.44 98.2 65.7% 146.7 

HEA300 10 3.85 13.2 259.7% 75.8% 323.92 247.06 76.3% 129.86 

HEB200 10 2.58 13.09 387.6% 76.4% 153.89 112.88 73.4% 193.99 
I300x10-
150x8 

5 1.55 4.86 322.6% 102.9% 127.01 73.75 58.1% 160.89 

3.1 Calculating the Theoretical Fundamental Critical (LTB) Moment 𝑴𝒇𝒖𝒏𝒅𝒂𝒎𝒆𝒏𝒕𝒂𝒍 

The 3-factor formula expression is used to calculate the theoretical fundamental critical 
moment 𝑀𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙  by setting the moment gradient factor to equal 𝐶1 = 1; setting correction factors 

to equal zero:𝐶2 = 𝐶3 = 0.0 . Consequently, data sets are collected for double symmetric sections loaded 
at the shear center. 
Factors 𝑘𝑧 and 𝑘𝑤 are similar to the buckling length factor for a compression member and are equal to 
1.0 unless a special provision for lateral bending and warping fixity is made. However, where lateral 

bending and warping are restrained, these factors are calculated as follows: 𝑘𝑧 =  𝑘𝑤  = √𝑘1𝑘2 , where 

𝑘1and 𝑘2 refer to lateral bending and warping coefficients at the left and right ends, respectively. Factors 
𝑘1and 𝑘2 equal 1.0 when lateral bending and warping are permitted, and they equal 0.5 when lateral 
bending and warping fixity is made [11]. Accordingly, there are three cases where lateral bending and 
warping are well defined: 

1- The common case of normal support conditions at the ends (fork supports), 𝑘𝑧 and 𝑘𝑤 are equal 
to 1. 

2- The case where lateral bending and warping are fixed at one end and free at the other. For 
example, if the lateral bending and warping are fixed at the left support (𝑘1 = 0.5) and free at 

the right (𝑘2 = 1.0), then𝑘𝑧 =  𝑘𝑤 = √𝑘1𝑘2 = 0.707. 

3- The case where lateral bending and warping are fixed at both ends, 𝑘𝑧and 𝑘𝑤are equal to 0.5. 
The study verifies the theoretical 𝑀𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙  using the 3-factor formula with LTBeam and ANSYS 

programs, and the difference between results is computed:  

∆𝐿𝑇𝐵𝑒𝑎𝑚=
|𝑀𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙(𝑇ℎ𝑒𝑜𝑟𝑖𝑡𝑖𝑐𝑎𝑙) − 𝑀𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙(𝐿𝑇𝐵𝑒𝑎𝑚)|

𝑀𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙(𝑇ℎ𝑒𝑜𝑟𝑖𝑡𝑖𝑐𝑎𝑙)
 

∆𝐴𝑁𝑆𝑌𝑆=
|𝑀𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙(𝑇ℎ𝑒𝑜𝑟𝑖𝑡𝑖𝑐𝑎𝑙) − 𝑀𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙(𝐴𝑁𝑆𝑌𝑆)|

𝑀𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙(𝑇ℎ𝑒𝑜𝑟𝑖𝑡𝑖𝑐𝑎𝑙)
 

Table 3 show a good agreement between outputs. It is also noticed that ANSYS outputs tend to be a few 
smaller than theoretical 𝑀𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙  in most cases, which will be explained in the next section. 

Table 3 Verify the 3-factor formula with ANSYS and LTBeam 

 

3 Moment Eq. LTBeam ANSYS

Fork Support 101.86 101.53 101.04 0.32% 0.80%

Fixed - Free 174.01 176.71 175.44 1.55% 0.82%

Fixed - Fixed 314.13 313.21 309.98 0.29% 1.32%

Fork Support 294.24 293.25 285.69 0.34% 2.91%

Fixed - Free 482.15 488.82 477.63 1.38% 0.94%

Fixed - Fixed 837.98 835.19 819.29 0.33% 2.23%

Fork Support 126.10 125.66 123.12 0.35% 2.37%

Fixed - Free 185.71 187.51 184.41 0.97% 0.70%

Fixed - Fixed 282.36 281.39 279.98 0.34% 0.84%

Fork Support 73.97 73.76 74.56 0.28% 0.79%

Fixed - Free 127.97 130.06 130.15 1.63% 1.70%

Fixed - Fixed 233.43 232.85 230.18 0.25% 1.39%

I300x8-150x8

Lateral 

Support
Section

M fundamental

IPE300

HEA300

ΔLTBeam ΔANSYS

HEB200
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3.2 Estimating Actual Critical Buckling (LTB) moment 𝑴𝒄𝒓 for a Beam Loaded by Intermediate 
Moment and two Reversed Loads. 

3.2.1 Loading Conditions (Fig. 7): 
This paper studies five load cases. These cases are different in terms of distribution of bending diagram, 
end moments, and restrained lateral bending and warping at beam ends as follows (Fig. 7): 

A. The first condition consists of a beam resting on fork supports, so the lateral bending and 
warping at the ends are free(𝑘1 =  𝑘2 = 1). 

B. The second condition is like case A, except that the lateral bending and warping are fixed on the 
left end(𝑘1 = 0.5, 𝑘2 = 1). 

C. The third condition is like case B, except for an end moment at the left. (𝑘1 = 0.5, 𝑘2 = 1) 
D. The fourth condition is like case C, except that the lateral bending and warping at the ends are 

fixed (𝑘1 =  𝑘2 = 0.5). 
E. The fifth condition is like case A, except that the lateral bending and warping are free at the left 

and fixed at the right (𝑘1 = 1, 𝑘2 = 0.5). 
The end moments are the fixed end moments for rigid-pinned members, as shown in (Fig. 8), and 
𝑀𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙  calculated above is mentioned briefly for each case in Fig. 7. 

 
Fig. 7: Load Cases. 

 
(A) Concentrated Force. 

 
(B) Intermediate Moment. 



Volume 5| April, 2022                                                                                                                                          ISSN: 2795-7640  

 

Eurasian Journal of Engineering and Technology                                             www.geniusjournals.org 

P a g e  | 181 

 
(C) Intermediate Moment and Two Reversed Forces. 

Fig. 8: Fixed End Moment for Rigid-Pinned Members.  
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3.3 Discussion 
It is noteworthy to observe the change in the moment gradient factor in response to the distribution of 
the bending diagram. Let us start from case A. Fig. 9  shows that critical 𝑀𝑐𝑟 is approaching the 
fundamental 𝑀𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 , while α ratio “α is indicated in Fig. 7” is approaching 0.83, 1.67, 1.66, and 

0.83 for IPE300, HEA300, HEA200, and I300x8-150x8 respectively. However, 𝑀𝑐𝑟 is still not less than 
𝑀𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 .  

The results from case A show that the moment critical moment is not below the fundamental buckling 
moment. Thus, this excludes the possibility of a detrimental effect due to distortion greater than the 
beneficial effect of the moment gradient, which results in a critical buckling moment less than the 
fundamental critical moment.  
Moving on to other cases: the results of B, C, D, and E are unique as Fig. 10, to Fig. 13 show situations 
where  𝑀𝑐𝑟 is less than  𝑀𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 . Even though there is a small dispersion between 𝑀𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙  

results collected from LTBeam, ANSYS, and the 3-factor formula for cases B, C, D, and E, as discussed 
before, this deviation does not affect the final conclusion, because the actual critical buckling moment 
𝑀𝑐𝑟 is lower than fundamental 𝑀𝐹𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙  with significant ratios as shown in these figures. 
Particularly, it is consistently found in Table 4 that the actual moments 𝑀𝑐𝑟 are lower than the 
fundamental 𝑀𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙  in most cases and could go down by 29% in some cases. 

Table 4: Ratio between Critical and Fundamental LTB Moment 

 

B C D E B C D E B C D E B C D E

LTBeam 0.80 0.90 0.84 1.02 0.80 0.88 0.85 0.73 0.78 0.86 0.83 0.73 0.80 0.90 0.84 0.75

ANSYS 0.81 0.91 0.83 1.02 0.78 0.86 0.82 0.71 0.76 0.84 0.81 0.71 0.83 0.93 0.85 0.75

I300x8-150x8Beam

Case

IPE300 HEA300 HEB200

𝑀𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙

𝑀𝐹𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙
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(a) IPE300       (b) HEA300 

 
(c) HEB200       (d) I300×8-150×8 

Fig. 9: Critical and Fundamental Buckling Moment for Case A. 

 
(a) IPE300       (b) HEA300 

 
(c) HEB200       (d) I300×8-150×8 

Fig. 10: Critical and Fundamental Buckling Moment for Case B. 
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(a) IPE300       (b) HEA300 

 
(c) HEB200       (d) I300×8-150×8 

Fig. 11: Critical and Fundamental Buckling Moment for Case C. 

 
(a) IPE300       (b) HEA300 

 
(c) HEB200       (d) I300×8-150×8 

Fig. 12: Critical and Fundamental Buckling Moment for Case D. 
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(a) IPE300       (b) HEA300 

 
(c) HEB200       (d) I300×8-150×8 

Fig. 13: Critical and Fundamental Buckling Moment for Case E. 
 
This discovered phenomenon is significant for the following reasons: 

1- It was believed that the critical moment using a uniform moment diagram is the most severe 
case  [5] [18] [16] [19] [20].In addition, current critical (LTB) moment equations in AISC360-16 
(and other similar design standards such as CAN/CSA-S16-14, AS-4100 (1998), etc.) prescribe a 
moment gradient factor of 1.0 for T-shaped beams [20]. The author believes that further studies 
for T shapes sections would imply that the actual critical (LTB) could be less than the 
fundamental critical moment. 

2- For the expressions developed in the U.S. standards, Moments MA, MB, MC  in Eq. (10) and Eq. 
(11) can’t be more than Mmax, so the minimum moment gradient factor is 1.  

3- To the authors’ knowledge, the reasons for reducing the critical (LTB) for the double symmetric 
I section are related to material-specific phenomena like imperfection, residual stresses, and 
load height to the centroid. So, for double symmetric sections loaded at the centroid, the moment 
modification factor is always greater than 1.0 for a varying bending moment diagram [5]. 
However, in some cases, further reductions in critical moment predictions may occur in shell 
finite element models due to localized buckling/deformation that may take place under the 
application of point loads, point moments, or reactions. It is thus important to verify this is not 
the case by examining the buckling mode shapes and taking precautions in the modeling to avoid 
any artificial localized effects under point loads/moments/reactions that will not take place in 
actual construction details (which inevitably distribute all "point" loads on some area of the 
cross-section). In this study, precautions are taken by adding beam elements at supports and 
loads locations at quarter points, as discussed earlier, see Fig. 14 and Fig. 15. These figures also 
show the eigenvalue buckling does not show local buckling modes.  

4- No single study finds cases where the value of critical LTB is less than the fundamental critical 
moment due to variation in the moment diagram and boundary conditions.  
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Fig. 14: Eigenvalue Buckling at Minimum Critical LTB (Case B) 

 

 
 
 

Fig. 15: Eigenvalue Buckling at Minimum Critical LTB (Case D) 

 
3.4 Justification 

By observing the recurring patterns of this phenomenon, it was found that there must be two conditions 
for its occurrence. 

(a) IPE300 (b) HEA300 

(c) HEB200 (d) I300×8-150×8 

(a) IPE300 (b) HEA300 

(c) HEB200 (d) I300×8-150×8 
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1- The beams shall be laterally restrained at one end at least. 
2- The moment diagram shall have N shape “Fig. 16” through points:𝑀1, 𝑀2, 𝑀3, 𝑀4 such that: 

• 𝑀1 ≈  𝑀3 
• 𝑀2 ≈  𝑀4 

 
Fig. 16: Moment Gradient when 𝑴𝒄𝒓 <  𝑴𝑭𝒖𝒏𝒅𝒂𝒎𝒆𝒏𝒕𝒂𝒍  

The recurring of this phenomenon with changing the location and tightness of the N shape needs to be 
studied in future research. Regardless, it was believed that the moment gradient formulas need to be 
developed due to the possibility that for some moment diagrams or boundary conditions, the equations 
give incorrect results [12] [11] [5], However, the paper shows it is required to develop the moment 
gradient formulas because they could also be less than one. 

4. Conclusion. 
The elastic critical moment is an important aspect of lateral-torsional buckling design. Standards, 
spreadsheets, and structural analysis programs use the moment gradient factor or equivalent moment 
factor to relate the critical LTB from different moment diagrams to the fundamental 𝑀𝑐𝑟 . It was thought 
that the fundamental critical moment is the most critical case. Almost no research can be found for 
loading cases where the critical LTB is less than the fundamental 𝑀𝑐𝑟 due to variation in the bending 
diagram and lateral boundary conditions, thus causing the moment factor to be less than one. 
The study discovers a new phenomenon where the actual critical moment is less than the fundamental 
critical moment. This phenomenon was achieved in loading cases consisting of an intermediate moment 
and two inverted forces, which are tracked throughout the variation of loading ratios and locations.  
Accordingly, the study provides the following recommendations and suggestions for future researches: 

1- It is required to recognize that the actual critical LTB could be less than the fundamental critical 
moment, and it is essential to realize that taking the moment gradient factor equal to 1 is not 
always conservative. In other words, the moment gradient factor, Cb = 1 overestimate the LTB 
buckling strength for cases studied herein. 

2- This phenomenon occurs under two conditions; First, when the beam is laterally restrained at 
ends. Second, when the moment gradient is similar to N shape, 

3- It is recommended to study the actual critical buckling moment for singly-symmetric I-shapes 
under the presented loading conditions since it is equal to the fundamental (LTB) for T-shaped 
beams susceptible to elastic lateral–torsional buckling in the CSA S16 and AISC 360, 

4- It is required to investigate the critical buckling moment on channels and cold-formed sections 
subjected to the same loading scenarios since it could be less than the fundamental (LTB) shown 
in I sections here. 

5- It is recommended to improve the moment gradient expressions included within the standards 
and exclude formulas that give results not less than one, 

5. Data Availability Statement: 
All data, models, or code that support the findings of this study are available from the corresponding 
author upon reasonable request. 
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