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1. Introductıon 
Over the past few decades, software 
technologies have become an indispensable 
part of modern human society, driving constant 
innovation and advancement in the software 
industry [1, 2]. Global competitiveness and the 
need for efficient software solutions have 
prompted developers and enterprises to 
explore software reuse paradigms, such as 

Free-Open-Source Software (FOSS) 
components and function-reuse concepts, to 
reduce development cycle delays and costs [2, 
3]. While software reuse offers cost-efficiency, 
it also introduces challenges such as aging, 
code smells, and faults due to excessive 
reliance on reused components [4-9]. These 
factors can lead to software malfunctions and 
impact overall reliability [2, 9]. 
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In critical domains like finance, healthcare, 
defense, and industrial control, software 
reliability is paramount, and any compromise 
in this aspect could have severe consequences 
[9, 10]. Thus, achieving software reliability 
without compromising cost-effectiveness has 
become a pressing concern. Software defect 
detection and prediction have emerged as 
essential practices to address this demand [9]. 
However, the complexity of software designs 
and diverse development paradigms make 
manual fault detection in large and complex 
software systems infeasible. Manual testing not 
only consumes substantial resources and time 
but also carries the risk of human errors and 
misjudgments [6]. 
To tackle these challenges and optimize defect 
prediction, automated reusability prediction 
approaches have been proposed, utilizing 
software metrics and machine learning 
methods [11-13]. While some efforts have been 
made to predict defects in individual software 
classes or functions using software metrics, the 
optimality of the employed machine learning 
classifiers has remained questionable. 
Challenges like local minima, convergence 
limitations, and the optimal selection of 
software metrics for defect prediction hinder 
the development of computationally efficient 
solutions. 
In the existing body of research, numerous 
software defect prediction (SDP) systems 
driven by machine learning tend to emphasize 
code complexity metrics like Lines of Code 
(LOC) and Depth of Inheritance Tree (DIT). 
However, they often neglect the inherent 
relationships between classes or components, 
such as cohesion and coupling. Overlooking 
these critical aspects can result in less accurate 
predictions since excessive reuse of different 
classes can also contribute to software faults 
[8, 9, 11, 12]. 
Furthermore, an unexplored issue in previous 
research is the challenge of class imbalance in 
defect prediction. The probability of a faulty 
class or defect occurrence is typically lower 
than that of normal classes, leading classical 
machine learning methods to exhibit false 
positives (favoring the majority class) under 

imbalanced data conditions, especially during 
local minima and premature convergence. 
This research paper introduces a novel and 
robust machine learning model for software 
defect prediction, aiming to overcome the 
limitations and challenges of existing 
approaches. To achieve this, the model utilizes 
Object-Oriented Programming (OOP) metrics, 
particularly CKJM (Chidamber and Kemerer 
Java Metrics), to facilitate two-class 
classification. The proposed method involves 
data resampling through Synthetic Minority 
Over Sampling (SMOTE), followed by Min-Max 
normalization and heuristic-driven neuro-
computing techniques. This comprehensive 
approach aims to improve the accuracy of 
defect prediction in software systems. 
In this article, we present a detailed description 
of our proposed software defect prediction 
model, along with its performance evaluation 
using various NASA PROMISE datasets. The 
results demonstrate the model's superiority in 
terms of accuracy, precision, recall, and F-
score, making it a promising solution for 
reliable and cost-effective software defect 
prediction. The subsequent sections delve into 
the architecture, methodology, and 
experimental findings of our heuristic-driven 
neuro-computing model for software defect 
prediction. 
2. Literature Survey 
Software defect prediction is a critical aspect of 
ensuring software reliability and quality. Over 
the years, researchers have explored various 
machine learning approaches for effective 
defect prediction. This literature survey 
provides an in-depth analysis of significant 
research papers in this domain, focusing on 
data mining-based methods, regression-based 
methods, neuro-computing-based approaches, 
genetic algorithms, decision tree-based 
techniques, association rule mining, and 
Bayesian neural networks. 
Liu et al. [14] proposed a generic multi-data 
training and validation model for fault 
classification, utilizing historical software 
metrics to improve defect prediction. Song et 
al. [15] employed association rule mining to 
enhance defect prediction accuracy in over 200 
projects compared to conventional techniques. 
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Lessmann et al. [16] conducted an evaluation of 
22 classifiers using NASA Metric datasets to 
determine their performance. 
Munson et al. [17] explored the efficiency of 
discriminating analysis using PCA to minimize 
complexity metrics for defect prediction. Tom 
[18] utilized the Naïve Bayesian algorithm for 
fault classification, achieving better results 
based on conditional independence hypothesis. 
Ohlsson et al. [19] employed a genetic 
algorithm for fault detection in 
telecommunication software modules. 
Riquelme et al. [20] used a genetic algorithm to 
predict defects, while Catal et al. [21] proposed 
an SDP system based on Artificial Immune 
System. 
Drown et al. [32] employed evolutionary 
sampling for enhanced software quality 
assurance and reliability. Chen et al. [22] 
designed a defect prediction system using data 
mining techniques, specifically employing 
Bayesian Network models. Wang et al. [23] 
investigated defect prediction by employing 
the C4.5 mining algorithm and leveraging 
Spearman's rank correlation coefficient in their 
study. 
Qinbao et al. [15] used association rule mining 
for defect prediction and correction with 
higher accuracy. Biwen et al. [24] proposed a 
C4.5 decision tree algorithm-based system with 
k-medoids clustering for improved fault 
prediction. Marwala [25] utilized Bayesian 
neural networks for fault detection in 
structures. 
Various studies emphasized the significance of 
CK-Metrics, object-oriented metrics, and UML 
diagrams for defect prediction [26-32]. These 
metrics provide valuable insights into software 
features and help in identifying defects 
effectively. 
In conclusion, This literature survey provides 
an overview of significant research in the field 
of software defect prediction. Various machine 
learning methods, such as decision trees, 
regression, and neuro-computing, were 
thoroughly examined for their effectiveness in 
defect prediction. Among these approaches, 
neuro-computing demonstrated higher 
efficacy; however, none of the existing methods 
adequately addressed issues related to class-

imbalance, convergence, and local minima in 
classical machine learning. 
The survey also highlighted the potential 
benefits of employing evolutionary computing 
algorithms like genetic algorithms and AIS to 
enhance data in defect prediction. 
Interestingly, while these algorithms have not 
yet been applied to boost the performance of 
machine learning methods for defect 
prediction, they hold promise for future 
improvements. 
Based on these findings, the dissertation 
proposes a novel heuristic-driven neuro-
computing approach for software defect 
prediction, utilizing OOP-CK metrics as 
benchmark datasets. 
 
3. Material And Methods 
In this article, we present an innovative 
approach known as the uristic-driven 
neurocomputing model for software defect 
prediction. The model is designed to effectively 
predict software defects by incorporating 
various stages, including data preparation, 
resampling techniques, and min-max 
normalization. By combining these essential 
steps, we create a robust framework that 
leverages the power of neurocomputing to 
enhance software defect prediction accuracy. 
Throughout this article, we will delve into the 
details of each stage, illustrating how they 
contribute to the overall effectiveness of our 
proposed model in software defect prediction. 
3.1  Heuristic Driven Neuro-Computing 

Model for Software Defect Prediction 
we present a comprehensive exploration of the 
processes involved in software defect 
prediction (SDP) tasks. We will delve into key 
procedures, such as data acquisition and 
processing, feature selection, resampling, and 
normalization. These fundamental steps set the 
foundation for our proposed heuristic-driven 
neuro-computing (HNC) algorithm, which we 
will thoroughly discuss and demonstrate its 
significance in the context of software defect 
prediction. Through this article, readers will 
gain valuable insights into the intricacies of 
SDP and the novel approach we have 
developed to enhance its accuracy and 
effectiveness. 
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3.1.1  Data Acquisition and Pre-processing 
In our study, we evaluated the performance of 
our software defect prediction model by using 
standard benchmark datasets sourced from the 
NASA PROMISE archive. These datasets, 
including Ant1.7, Camel1.6, IVY, and JEdit, were 
collected from different software components 
using advanced mining techniques like 
Chidamber and Kamerer Java Virtual Machine 
(CKJM). The CKJM tool allowed us to extract 22 
software metrics from the software, which 
were based on Object-Oriented Programming 
(OOP) principles. 
However, we recognized that not all software 
metrics have equal importance in software 
defect prediction. To tackle this concern, we 
employed various feature engineering 
techniques. These techniques included 
univariate logistic regression-driven feature 
selection, resampling, and min-max 
normalization. By using these methods, we 
optimized the feature set and prepared the 
data for our analysis. In the following sections, 
we will provide a detailed explanation of these 
feature engineering processes and their 
contributions to the overall effectiveness of our 
software defect prediction model. 
3.1.2 Univariate Logistic Regression based 

Feature Selection 
In essence, the Univariate Logistic Regression 
(ULR) method is a statistical analysis technique 
that involves both dependent and independent 
variables. In our case, the dependent variable is 
the per-class software reusability, and the 
independent variables are the software 
metrics. As we are dealing with a two-class 
problem (Normal or Defect/Fault), the 
dependent variable takes on two labels: 1 for 
Normal and 0 for Defect/Fault. This allows us 
to evaluate the significance of each OOP CK 
metric in predicting software reusability. 
Mathematically, we utilize equation (1) to 
estimate the logistic regression value. 

𝜋(𝑥) =
𝑒𝛼0+𝛼1𝑋

1 + 𝑒𝛼0+𝛼1𝑋
 

(1) 

In equation (1), the dependent variable is 
represented as logit[π(x)], and the independent 
variable is denoted by X. The parameter π 
denotes the likelihood factor, which signifies 
the importance of each metric in the analysis. 

We estimate the value of π(x) using equation 
(2). 

𝑙𝑜𝑔𝑖𝑡[𝜋(𝑥)]
= 𝛼0 + 𝛼1𝑋 

  (2) 
 
 

Let's consider a dataset X with N rows and M+1 
columns. In this context, M represents the 
number of independent variables for each row 
(in this case, 17 software metrics), and the 
additional column is reserved for the 
dependent variable. Now, let β be a column 
vector of length K+1, where K represents the 
number of parameters associated with the M 
columns of the independent variable. Each 
parameter in the vector β corresponds to one 
of the M columns of the independent variable. 
When we utilize the logistic regression 
function, also known as the Logit function, we 
calculate the log-odds of the likelihood of 
success in relation to the linear component. 
Mathematically, this can be expressed as 
follows: 

𝐿𝑜𝑔𝑖𝑡 (
𝜃𝑖

1 − 𝜃𝑖
)

= ∑ 𝑥𝑖𝑚𝛽𝑚        𝑖

𝑀

𝑚=0

= 1,2, … ,𝑁 

(3) 

In equation (3), the term (θ_i / (1-θ_i)) 
represents a factor commonly known as the 
odds of an event. Now, let's consider the 
variable y, takes a value of 1 for the Normal or 
Defect/Fault class. This variable follows a 
Bernoulli distribution with a probability 
parameter denoted as p. For each instance, we 
calculate the probability parameter (p-value), 
and the model selects instances where p≥0. 05.. 
Despite the CKJM model extracting a total of 22 
distinct features, the Univariate Logistic 
Regression (ULR) feature selection method 
identified six specific OOP metrics that hold 
significant importance in software defect 
prediction. These metrics are as follows: 

1. WMC - Weighted Methods per Class 
2. DIT - Depth of Inheritance Tree 
3. NOC - Number of Children 
4. CBO - Coupling between Object Classes 
5. RFC - Response for a Class 
6. LCOM - Lack of Cohesion in Methods 
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Additionally, the following metrics were 
considered for further computing, making a 
total of 17 different characteristics: 

1. Ca - Afferent Couplings 
2. Ce - Efferent Couplings 
3. NPM - Number of Public Methods 
4. DAM - Data Access Metric 
5. MOA - Measure of Aggregation 
6. MFA - Measure of Functional 

Abstraction 
7. CAM - Cohesion Among Methods of 

Class 
8. CC - Cyclomatic Complexity 
9. LOC - Lines of Code 
10. IC - Inheritance Coupling 
11. CBM - Coupling Between Methods 
12. AMC - Average Method Complexity 

These selected features form the basis for 
further computations and analysis in the 
software defect prediction model. 

3.1.3 Feature Re-sampling:  
This study acknowledged the problem of class-
imbalance in the IVY, JEdit, Camel, and Ant 
datasets, where the number of defect classes is 
considerably smaller compared to the normal 
classes. To tackle this issue, the researchers 
used a resampling technique on the input data. 
Specifically, they employed the synthetic 
minority oversampling method to increase the 
number of minority samples, ensuring the 
training process's effectiveness. This approach 
aimed to mitigate the skewed performance and 
high false-positive outputs that can arise due to 
class-imbalance in machine learning models. 
By addressing this concern, the study sought to 
enhance the overall performance and reliability 
of their software defect prediction model. 
To handle class-imbalance, the study used a 
confidence level of 95% for both up-sampling 
and down-sampling techniques. Simple over-
sampling or under-sampling, or random 
resampling, was deemed inadequate in fully 
resolving class-imbalance issues as it could 
introduce bias in favor of the majority class. 
This bias may cause new samples to be 
predicted as the majority class, resulting in 
false predictions and reduced model accuracy. 
Therefore, the researchers opted for a more 
robust approach to ensure the effectiveness 

and reliability of their software defect 
prediction model. 
To address the aforementioned limitations, the 
proposed model implemented the synthetic 
minority oversampling technique. This 
involved generating synthetic positive samples 
using the K-nearest neighbor (k-NN) algorithm, 
with a specific choice of 5-Nearest 
Neighborhood for the minority "Defect or 
Fault" class. The next step was to balance the 
dataset by equalizing the number of samples, 
ensuring that the majority class had the same 
number of samples as the minority class. This 
approach aimed to create a more balanced 
dataset, leading to improved machine learning 
performance and higher prediction accuracy in 
software defect prediction. 

3.1.4 Min-Max Normalization 
It is well-known that data imbalance and 
convergence are significant challenges in 
classification or prediction systems, 
particularly in models with large sets of 
features. After performing feature extraction 
and selection, the retrieved data may vary in 
size and range, leading to computational issues 
such as premature convergence and overfitting 
of the learning model. This can negatively 
impact the overall computational efficiency, 
accuracy, and reliability of the system. 
To tackle this issue, the proposed model 
employs Min-Max normalization on the input 
data. The Min-Max normalization algorithm, 
denoted by equation (3.4), scales the feature 
values to lie within the range of 0 to 1. Through 
linear conversion and mapping of each data 
element xi' from the selected features X, the 
proposed model ensures normalization within 
the range [0, 1]. This normalization process is 
crucial for handling unstructured data 
effectively, addressing convergence problems, 
and improving the computational efficiency 
and reliability of the learning model. Equation 
(4) is utilized in the proposed model to 
estimate the normalized value(s) of the input 
data xi. 

𝑁𝑜𝑟𝑚(𝑥𝑖) = 𝑥𝑖
′

=
𝑥𝑖 −𝑚𝑖𝑛 (𝑋)

𝑚𝑎𝑥(𝑋) −  𝑚𝑖𝑛 (𝑋)
 

(4
) 

In equation (4), the terms min(X) and max(X) 
represent the minimum and maximum values 
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of the dataset X, respectively. These values 
define the lower and upper bounds of the 
normalization process. 
Data normalization was applied to all input 
benchmark datasets in the suggested model, 
resulting in the following normalized:  

[𝐷𝑖] = 𝑁𝑜𝑟𝑚(𝑖
⊂ 𝐽𝐸𝑑𝑖𝑡, 𝐼𝑉𝑌, 𝐴𝑁𝑇, 𝐶𝐴𝑀𝐸𝐿) 

(
5
) 

3.1.5 Heuristic Driven Neuro-
Computing Model for SDP 

Once the input data or selected features from 
each dataset were normalized, the proposed 
model then proceeded with the two-class 
classification using the heuristic-driven neuro-
computing model (HNC). The HNC model is a 
key component of the study, and its derivation 
and functioning are described in detail below: 

3.1.5.1 Independent and Dependent 
Variable Definition 

The primary aim of this study is to explore the 
association between various metrics and the 
likelihood of software faults. It is essential to 
recognize that the relationship between 
measurements and fault proneness at the class 
level is not linear. To tackle these challenges, 
the study used defects as the dependent 
variable while considering specific CK metrics 
as independent variables. The objective is to 
establish a correlation between the occurrence 
of faults in a class and the CK metrics. The 
analysis in this thesis examines the impact of 
17 CK metrics on the occurrence of faults, as 
illustrated below: 

𝐹𝑎𝑢𝑙𝑡𝑠 =  𝑓(𝑊𝑀𝐶,𝐷𝐼𝑇,𝑁𝑂𝐶, 𝐶𝐵𝑂, 𝑅𝐹𝐶, 𝐿𝐶𝑂𝑀, 𝐶𝑎, 𝐶𝑒, 𝑁𝑃𝑀,  
𝐷𝐴𝑀,𝑀𝑂𝐴,𝑀𝐹𝐴, 𝐶𝐴𝑀, 𝐶𝐶, 𝐿𝑂𝐶, 𝐶𝐵𝑀, 𝐴𝑀𝐶, ) 

(6) 

 
3.1.5.2 Neu-Computing Model: 

Definition  
Over the years, artificial intelligence systems 
have made significant advancements, drawing 
inspiration from biological neural networks 
and their functioning. Researchers from 
diverse fields have utilized Artificial Neural 
Networks (ANNs) to solve various 
computational problems. Traditional 
mechanisms for computational problem-
solving have shown limitations in performance, 
leading to the emergence of ANNs as a 
promising technique. ANNs have become a 

preferred alternative for addressing major 
computational and decision-oriented issues, 
including software defect prediction and 
classification in this thesis. 
The history of ANN's development can be 
divided into three phases. The first phase, 
during the 1940s, saw significant contributions 
from researchers like McCulloch and Pitts. The 
second phase, in the 1960s, involved 
researchers such as Rosenblatt and Minsky et 
al., who proposed theories like perceptron 
convergence and highlighted the limitations of 
simple perceptron-based NN. This phase 
motivated researchers to work on optimizing 
ANN networks for efficient applications in 
computer science, lasting for about 20 years. 
The third phase emerged in the 1980s when 
ANNs achieved significant breakthroughs. 
During this time, Hopfield's energy approach 
was introduced, and the back-propagation 
algorithm became a revolutionary 
development, especially for multilayer 
perceptrons. It underwent several 
optimizations and improvements. Various 
researchers have contributed to the continuous 
development and refinement of ANN 
techniques throughout the years. 

3.1.5.3 Computational Models of 
Neurons 

The neuron formula computes the weighted 
sum of its n input signals, represented as xj = 1, 
2, ..., n. If the total sum exceeds a pre-defined 
threshold U, the neuron generates an output of 
1; otherwise, the output is 0. 

𝑦 = 𝜃 (∑𝑤𝑗

𝑛

𝑗=1

𝑥𝑗 − 𝑢) 

(7) 

The neuron's formula incorporates a periodic 
function θ () with a unit step at 0, and the 
relationship between the synapse weight and 
the jth input is represented by wj. The 
threshold U is considered as another weight w0 
= -U, attached to the neuron, with a constant 
input x0 = 1. Positive weights are associated 
with excitatory synapses, while negative 
weights are linked to inhibitory synapses. 
McCulloch and Pitts demonstrated that when 
the weights are appropriately chosen, a 
synchronous arrangement of such neurons can 
perform universal computations. 
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The McCulloch-Pitts neuron is biologically 
inspired, where axons and dendrites are 
likened to wires and linkages, synapses are 
represented by connection weights, and 
neuronal activity is approximated by the 
activation function. However, the model has 
certain assumptions that don't completely 
mirror actual neuron behavior. To enhance the 
model's capabilities, various activation 
functions have been introduced, such as 
piecewise linear, sigmoid, or Gaussian 
functions. Among these, the sigmoid function, 
particularly the logistic function, is commonly 
used in Artificial Neural Networks (ANNs) due 
to its smoothness and favorable asymptotic 
properties. 

𝑔(𝑥) =
1

(1 + 𝑒𝑥𝑝−𝛽𝑥)
 

(8) 

3.1.5.4 ANN Architectures 
Artificial Neural Networks (ANNs) can be 
conceptualized as weighted directed graphs, 
where artificial neurons are depicted as nodes, 
and directed edges symbolize connections 
between neuron outputs and inputs. ANNs can 
be classified into two main types based on their 
connection patterns: 

• Feed-forward networks: These 
networks do not have loops in their 
graphs, resulting in unidirectional 
connections between neurons organized 
into layers. The most well-known 
example is the multi-layer perceptron. 
Feed-forward networks produce a 
single set of output values from a given 
input, making them static and memory-
less, as their response to an input is 
independent of the previous network 
state. 

• Recurrent (or feedback) networks: 
These networks feature loops created 
by feedback connections, making them 
dynamic systems. Upon receiving a new 
input pattern, the neuron outputs are 
computed, and the feedback paths 
modify the inputs to each neuron, 
causing the network to transition to a 
new state. Due to their network 
architectures, recurrent networks 
necessitate distinct learning algorithms 
for training. 

The subsequent section offers a comprehensive 
overview of the learning processes for the 
various types of networks mentioned earlier. 

3.1.5.5 ANN Learning 
Learning plays a crucial role in intelligence, and 
within the domain of Artificial Neural 
Networks (ANNs), it pertains to updating the 
network's architecture and connection weights 
to effectively accomplish a particular task. 
ANNs possess the ability to learn automatically 
from examples, distinguishing them from 
conventional expert systems that depend on 
pre-defined rules. 
The field of learning in neural networks 
consists of three primary paradigms: 
supervised, unsupervised, and hybrid. In 
supervised learning, the network is provided 
with correct answers for each input pattern, 
enabling it to adjust the weights accordingly. 
Unsupervised learning, on the other hand, 
focuses on exploring the underlying structure 
and correlations in the data without explicit 
correct answers. Hybrid learning combines 
elements of both supervised and unsupervised 
approaches to leverage their respective 
advantages. 
In learning theory, three important aspects are 
considered: capacity, sample complexity, and 
computational complexity. Capacity relates to 
the network's ability to store patterns and 
establish decision boundaries. Sample 
complexity determines the minimum number 
of training patterns required for the network to 
generalize effectively. Computational 
complexity, on the other hand, refers to the 
time taken by learning algorithms to process 
and adjust the network's weights during 
training. 
There are four primary types of learning rules: 
error correction, Boltzmann, Hebbian, and 
competitive learning. In this thesis, the error 
correction model has been chosen for software 
defect prediction (SDP). The error correction 
rules play a vital role in enhancing the learning 
process for SDP, aiming to optimize the 
prediction accuracy and overall performance of 
the model. 

3.1.5.6 Error-Correction Rules Based 
Learning 
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In the supervised learning paradigm, the 
network is given the desired outputs for each 
input pattern. While learning, the actual output 
y produced by the network might deviate from 
the desired output d. Error-correction learning 
rules function by utilizing the error signal (d - 
y) to adjust the connection weights gradually, 
with the objective of minimizing this error and 
improving the network's accuracy in 
generating the desired outputs. 
The perceptron learning rule is based on this 
error-correction principle and is used for 
perceptrons, which are single neurons with 
adjustable weights (wj, j = 1, 2, ..., n) and a 
threshold U. Given an input vector x = (x1, x2, ..., 
xn), the net input to the neuron is calculated as 
follows: 

𝒗 =∑𝑤𝑗𝑥𝑗 − 𝑢

𝒏

𝒋=𝟏

 
(9) 

In a two-class classification scenario, the 
perceptron functions as a binary classifier. If 
the net input v is positive, the perceptron's 
output y is +1, indicating one class. On the 
other hand, if v is non-positive, the output y is 
0, representing the other class. The decision 
boundary, defined by a linear equation, 
separates the input space into two regions, 
categorizing input patterns into their 
respective classes based on the sign of the net 
input. 
Rosenblatt [33] devised a learning procedure 
to calculate the weights and threshold in a 
perceptron using a set of training patterns. The 
perceptron learning procedure achieves 
convergence after a finite number of iterations 
when training patterns are drawn from two 
classes that are linearly separable, as 
confirmed by the perceptron convergence 
theorem. However, in real-world scenarios, it is 
often uncertain whether the patterns are 

linearly separable, leading to challenges in 
applying the standard perceptron learning 
algorithm. To address this, variations of the 
learning algorithm have been proposed in the 
literature to handle non-linearly separable data 
and enhance the perceptron's performance in 
practical applications [34]. 

3.1.5.7 LM-ANN Neuro-Computing for 
SDP Learning 

LM-ANN, regarded as one of the top neuro-
computing models, was independently 
developed by Kenneth Levenberg and Donald 
Marquardt. This model offers a numerical 
solution for minimizing nonlinear functions 
and is known for its fast and stable 
convergence. In the domain of artificial neural 
networks, LM-ANN is particularly well-suited 
for training small- and medium-sized 
problems. 
The error backpropagation (EBP) algorithm, 
also known as the steepest descent algorithm, 
is another extensively employed method for 
training neural networks. Although EBP 
brought considerable advancements, its slow 
convergence remains a challenge, mainly due 
to the requirement for suitable step sizes and 
the presence of "error valleys" caused by 
varying curvature in different directions during 
the optimization process. 
To overcome the slow convergence issue, the 
Gauss-Newton algorithm utilizes second-order 
derivatives to assess the curvature of the error 
surface. This enables the algorithm to find 
appropriate step sizes and achieve faster 
convergence. However, this improvement is 
contingent on having a reasonable quadratic 
approximation of the error function; otherwise, 
the algorithm may diverge and lead to 
undesirable results. 
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Fig.1 Searching process of the steepest descent method 
3.1.5.8 Heuristic Driven LM-ANN Neuro-

Computing for Software Defect 
Prediction 

Artificial Neural Networks (ANNs) emulate the 
functional aspects of the human brain, allowing 
them to learn from input data or patterns and 
categorize unknown inputs into target 
categories. The ANN model comprises three 
layers: the input layer, hidden layer, and output 
layer (as shown in Figure 3.2). This 
architecture incorporates multiple neurons 
that process input data at the hidden layers, 
leading to classification at the output layer. 
During the learning process, the ANN employs 
error-reduction methods to calculate the 
discrepancy between expected and observed 
outputs, with the ultimate goal of achieving 

zero-error or minimizing the error to improve 
accuracy in the classification tasks. 
The proposed ANN algorithm in this study 
focuses on two-class classification, where each 
class is classified as either Normal Class 
(labeled as "1") or Faulty Class (labeled as "0"). 
The input features for each class of the 
software are used as input to the ANN, and the 
number of hidden layers can vary depending 
on the specific configuration. In the input layer, 
a linear activation function is applied, resulting 
in an output that is identical to the input itself. 
The output from the hidden layer is then fed to 
the input of the output layer. The output layer 
of the ANN utilizes the Sigmoid function to 
produce the final output, providing the 
classification result for the input data. 

 

Fig.2 An illustration of ANN architecture with single hidden layer with one output node 
 

𝑂ℎ =
1

1 + 𝑒−𝐼ℎ
 

     (10) 

In equation (10), Ih represents the input at the 
hidden layer. ANN is commonly defined as Y' = 
f(W, X), where Y' denotes the output vector, 
and X and W represent the input and weight 
values, respectively. The ANN aims to minimize 
a certain error function, such as mean square 

error (MSE), to achieve higher accuracy, which 
is estimated using equation (11). 

𝑀𝑆𝐸

=
1

𝑛
∑(𝑦𝑖

′ − 𝑦𝑖)
2

𝑛

𝑖=1

 

(11) 
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In equation (11), y represents the observed 
value, while yi' is the expected value. 
The neuro-computing architecture utilized in 
this study (Figure 2) comprises 17 input nodes, 
each representing one of the 17 CK metrics 
from multiple classes as individual inputs. As 
the expected outputs are binary, either FAULTY 
or NO-FAULTY, only one output node is 
necessary. The defined ANN architecture 
includes 19 hidden layers to strike a balance 
between performance and computational 
complexity. Thus, a total of 342 weights (17 
input nodes + 1 output node) * 19 hidden 
nodes) need to be estimated for fault 
prediction and classification purposes. 
To facilitate learning in the targeted neuro-
model (Figure 2), the proposed neuro-

computing approach involves the continuous 
estimation of 342 weight parameters in each 
iteration. However, this process can lead to 
challenges related to convergence and 
potential local minima issues, which may affect 
overall performance. To address these 
concerns, the researchers incorporate a 
heuristic model, specifically the genetic 
algorithm, to continuously fine-tune the 342 
weight parameters. This strategy aims to 
overcome local minima problems and enhance 
the overall performance of the neuro-
computing model. The use of the genetic 
algorithm is hypothesized to yield superior 
results in the optimization process. 

 
Fig.3 HCN Model: 𝑾𝒌 is the current weight, 𝑾𝒌+𝟏is the next weight, 𝑬𝒌+𝟏is the current total error, and 

𝑬𝒌 is the final error 
 

The overall training function of the targeted 
LM-ANN neuro-computing model follows the 
mechanism depicted in Figure 3. The core of 
this model lies in equation (w_(k+1)=w_k-
(J_k^T J_k+μI)^(-1) J_k e_k), which is used to 
update the weight parameters for continuous 
feature learning. However, estimating 342 
weight parameters over each iteration can lead 
to issues like local minima and convergence. To 
address this, the study applies a heuristic 
model called genetic algorithm. 
In the proposed model, the genetic algorithm 
dynamically estimates the optimal set of 

weight parameters to tune the weight 
parameters in equation (w_(k+1) =w_k-(J_k^T 
J_k+μI) ^ (-1) J_k e_k), which facilitates efficient 
learning and yields superior results. This 
approach helps the LM-ANN (Figure 3) to 
overcome convergence and local minima 
problems during training, enhancing the 
overall performance of the model. 

3.1.5.9 Heuristic Driven LM-ANN 
Weight Tuning 

In this study, to tackle the challenges 
associated with estimating a large number of 
weight parameters and to address issues like 
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local minima and convergence, the researchers 
employ a heuristic concept called Genetic 
Algorithm (GA). GA draws inspiration from 
Darwin's principle of selection and operates as 
an evolutionary computing technique, intended 
to identify optimal solutions from a pool of 
potential sub-solutions. In the context of 
optimizing the targeted LM-ANN, GA seeks to 
enhance the learning process of the ANN by 
discovering an optimal set of weight 
parameters that can lead to higher accuracy in 
the classification tasks. 
The Genetic Algorithm (GA) begins by 
initializing a random set of weights as an initial 
population, where each population is 
represented as binary strings encoding a 
potential solution. Each candidate solution is 
then assessed based on a fitness value, which 
indicates its suitability as a solution. The 
candidates with higher fitness values are 
retained, while those with lower fitness are 
eliminated. The next generation of candidate 
solutions is created through a process of 
crossover or reproduction, which occurs based 
on predetermined probabilities for crossover 
and mutation. This selection and breeding 
process allows GA to iteratively improve the 
population of solutions, leading to better 
solutions over successive generations. 
In the neuro-computing model with an i-h-o 
network configuration (i input layer, h hidden 
layer, and o output layer), each of the 17 
software metrics is input to each input neuron. 
The resulting architecture becomes 17-19-1, 
with 19 hidden layers utilized to handle the 
model's complexity effectively. For this specific 
architecture, the total number of weights 
required is N (12). 

𝑁 
=  (𝑖 + 𝑂)
∗ ℎ   

(12) 

The process of creating appropriate 
populations and evolving them through 
successive generations continues until the 
optimal target value, known as the stopping 
criteria, is reached. This stopping criteria is 
achieved when the set of weight parameters 
results in an error of zero or near-zero during 
ANN learning. In other words, the genetic 
algorithm iteratively refines the populations 
until the ANN's learning process achieves a 
highly accurate solution. 
To improve learning and fine-tune the weights, 
the proposed model considers each weight 
value as a gene in the chromosomes. Hence, for 
a total gene length of l, the length of the 
chromosome, LChrom, is determined using 
equation (13). 

𝐿𝐶ℎ𝑟𝑜𝑚
=  𝑁 ∗  𝑙 
=  (𝑖 +  𝑂)  ∗ ℎ 
∗  𝑙  

(13) 

In the proposed Genetic Algorithm (GA) model, 
all chromosomes are used as input weights and 
form the population. The fitness of each 
generation is evaluated to determine their 
suitability in achieving the objective of 
minimizing the Mean Squared Error (MSE). 
Through weight updates or tuning in each 
generation, the GA model aims to find the 
optimal set of weight parameters that result in 
the minimum Root Mean Squared Error 
(RMSE). The weights (W_k) are updated or 
tuned in accordance with equation (14) in the 
proposed model. 

𝑊𝑘 =

{
  
 

  
 

𝑖𝑓 0 ≤  𝑥𝑘𝑙+1 < 5

−
𝑥𝑘𝑙+2∗10

𝑙−2 + 𝑥𝑘𝑙+3∗10
𝑙−3 +⋯+ 𝑥(𝑘+1)𝑙

10𝑙−2

𝑖𝑓 5 <= 𝑥𝑘𝑙+𝑙 <= 9

+
𝑥𝑘𝑙+2∗10

𝑙−2 + 𝑥𝑘𝑙+3∗10
𝑙−3 +⋯+ 𝑥(𝑘+1)𝑙

10𝑙−2

 

 
 
(14) 

The pseudo-code for the proposed heuristic-driven neuro-computing (HNN) model is presented in 
Figure 4. 
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Fig.4 Pseudo code for HNC 

4. Results And Dıscussıon 
In this section, we present the results of our 
simulations and statistical analyses to assess 
the performance of the proposed heuristic-
driven neuro-computing (HNC-SDP) model 
compared to existing state-of-the-art models. 
For the evaluation, we utilized four benchmark 
datasets: IVY, CAMEL, ANT, and JEDIT, which 
were obtained from the NASA PROMISE 
repository for software defect prediction. The 
HNC-SDP model was developed using 
MATLAB2015b software and executed on a 
computer with 8GB RAM and an Intel i5 
processor running Microsoft Windows 10. A 
detailed examination of the proposed model 
and the statistical analyses are discussed in the 
subsequent sections. 
 

4.1   Characterization of Performance 
The performance evaluation of the proposed 
HNC-SDP model was conducted individually for 

each dataset, and the corresponding confusion 
metrics were derived to assess its 
performance. Confusion metrics offer crucial 
statistical measures, including accuracy, 
precision, recall, and F-Measure, to evaluate the 
effectiveness of the model. Table 1 provides a 
comprehensive summary of the confusion 
metrics and the corresponding statistical 
parameters for each test case. 
In this research, for each simulation case 
involving the JEDIT, Ant, Camel, and IVY 
datasets, the confusion matrix was computed 
to determine the counts of true positives (TP), 
true negatives (TN), false positives (FP), and 
false negatives (FN). Utilizing these matrix 
values, the model's performance was assessed 
in terms of accuracy, precision, recall, and F-
Measure, as detailed in Table 1. These metrics 
provide valuable insights into the effectiveness 
of the proposed model across different 
datasets. 

Table.1 Performance Parameters 
Parameter Mathematical 

Expression 
Definition 

Accuracy (𝑇𝑁 + 𝑇𝑃)

(𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑃)
 

Indicates the percentage of 
predicted fault prone 
modules that are examined 
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out of all modules. 
Precision 𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

Indicates the extent to which 
repeated observations under 
test conditions provide the 
same findings. 

F-measure 
2.
𝑅𝑒𝑐𝑎𝑙𝑙. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

It creates a single score by 
combining the precision and 
recall numeric values, which 
is specified as the harmonic 
mean of the recall and 
precision. 

Recall 𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

It specifies the number of 
objects that must be listed. 

In this study, the performance evaluation 
involved using multiple input datasets, and the 
overall assessment of performance was carried 
out using two methods: intra-model 
comparison and inter-model comparison. 
These approaches allowed for a comprehensive 
evaluation of the proposed model's 
performance compared to other models and its 
effectiveness across different datasets. 
Intra-model comparison entailed a statistical 
evaluation of the proposed HNC-SDP model's 
performance using various input datasets, 
focusing on metrics such as accuracy, precision, 
recall, and F-Measure. This analysis aimed to 
gauge how well the model performed across 
different datasets and provided insights into its 
consistency and reliability. 
On the other hand, inter-model comparison 
involved analyzing the relative performance of 
the proposed HNC-SDP model in comparison to 
different existing methods. 
The detailed analysis and significance of the 
simulation results are discussed in the 
following sections. 

4.1.1 Intra-Model Performance 
Characterization 

In this evaluation, the goal is to analyze the 
performance of the proposed model using 
various input datasets. The objective is to 
assess the effectiveness of the proposed model 
across different inputs and identify its 
strengths and weaknesses. Additionally, this 
assessment helps determine the average 
performance of the proposed system, which 
can be used later for comparing its relative 
performance to other models (inter-model 
comparison). 

4.1.2 Test Case-1 IVY Dataset 
The confusion metrics for the IVY dataset, 
representing faulty and non-faulty (normal 
class) instances, are provided in Table 2 and 
Table 3. These metrics are obtained both 
before and after the execution of the proposed 
HNC-SDP model. The purpose of obtaining 
these metrics is to compare and contrast the 
results, which will help in understanding the 

classification performance of the proposed model (HNC-SDP). 
Table.2 Confusion matrix for IVY dataset before HNC-SDP execution 

 Normal Fault/Defect 
Normal 481 0 
Fault/Defect 40 0 

Table.3 Confusion matrix for IVY data after prediction 
 Normal Fault/Defect 
Normal 311 1 
Fault/Defect 36 4 
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Table 4 presents the statistical results obtained 
for accuracy, precision, recall, and F-Measure. 
The proposed HNC-SDP model achieved an 
accuracy of 88.35%, precision of 99.36%, F-
Measure of 93.8%, and recall (sensitivity) of 
88.83%. Notably, the higher F-Measure value of 
0.93 indicates the effectiveness of the proposed 

model even under class-imbalanced conditions. 
The decrease in RMSE or MSE values over 
generations, as shown in Figure 5 for different 
datasets, demonstrates the efficient learning of 
the proposed neuro-computing model, leading 
to superior performance. 

Table.4 Cumulative HNC-SDP Performance evaluation for IVY data 
Accuracy Precision F-Measure Recall 

0.8835 0.9936 0.9380 0.8883 

 

 
Fig.5 MSE variation for HNC-SDP model over IVY dataset 

In this study, the Mean Square Error (MSE) was 
utilized as the fitness value during the learning 
process using the proposed heuristic model. 
The goal was to minimize the MSE, which 
implies that the Root Mean Square Error 
(RMSE) should decrease with increasing 
generations as the model learns and 
approaches an optimal fitness value. Following 
genetic computing principles, the error should 
decrease over generations. The results 
obtained in this thesis, as shown in Figure 1, 
Figure 2, Figure 3, and Figure 4, confirm that 
the proposed heuristic-driven neuro-
computing model (HNC-SDP) performs 
optimally in terms of software defect 

prediction, as expected. The decreasing trend 
of RMSE over generations demonstrates 
effective learning and convergence, leading to 
improved defect prediction accuracy. 

4.1.3 Test Case-2 ANT Dataset 
The proposed HNC-SDP model was also applied 
to the ANT1.7 PROMISE dataset, and the 
simulation results are presented below: Table 
5 shows the confusion matrix of the ANT1.7 
defect dataset before using the HNC-SDP model 
for defect prediction. Table 6 displays the 
confusion metrics obtained after applying the 
HNC-SDP model (referred to as the proposed 
model) for defect prediction. 
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Table.5 Confusion matrix for ANT data before prediction 
 

Table.6 Confusion Matrix for ANT Data After Prediction 
             Normal     Fault/Defect 

Normal 578 0 
Fault/Defect 157 9 

The statistical performance results obtained 
based on the confusion metrics from Table 6 
are presented in Table 7. Additionally, Figure 6 
illustrates the variation of Mean Squared Error 

(MSE) over the learning process. The results 
demonstrate the performance of the proposed 
HNC-SDP model on the ANT1.7 PROMISE 
dataset. 

Table.7 Aggregate HNC-SDP Performance assessment for ANT data 
Accuracy Precision F-Measure Recall 

0.8145 0.9343 0.8867 0.8438 
 

 
Fig.6 MSE variation for HNC-SDP model over ANT dataset 

The results from Table 7 indicate that the 
proposed HNC-SDP model achieved an 
accuracy of 81.4%, precision of 93.43%, recall 
(sensitivity) of 84.3%, and F-Measure of 
88.67% when applied to the ANT1.7 dataset. 
These performance metrics demonstrate the 
effectiveness of the proposed model in defect 
prediction and classification for the ANT1.7 
dataset. 

4.1.4 Test Case-3 JEDIT Dataset 
The confusion matrix for the JEDIT dataset 
before the execution of HNC-SDP is presented 
in Table 8. After applying the HNC-SDP model, 
the corresponding confusion matrix is shown 
in Table 9. These matrices provide valuable 
insights into the classification performance of 
the proposed model for the JEDIT dataset. 

Table.8 Confusion matrix for JEDIT data prior to prediction 
 Normal Fault/Defect 

Normal 481 0 
Fault/Defect 11 0 

 Normal    Fault/Defect 

Normal 578 0 

Fault/Defect 166 9 
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Table.9 Confusion matrix for JEDIT data later of prediction 
 Normal Fault/Defect 
Normal 481 0 
Fault/Defect 10 1 

 
The statistical results for the proposed HNC-
SDP model execution on the JEDIT dataset are 
presented in Table 10. The overall performance 
of the model for the JEDIT data is assessed in 
terms of accuracy, precision, recall, and F-
Measure. The results indicate that the accuracy 
achieved by the HNC-SDP model on the JEDIT 

dataset is approximately 98%. Additionally, the 
precision, recall, and F-Measure values are 
found to be 100%, 100%, and 98.97% 
respectively. Moreover, the MSE variation 
analysis also demonstrates superior learning, 
leading to optimal performance as shown in 
Table 10. 

Table.10 Cumulative HNC-SDP Performance evaluation for JEDIT data 
Accuracy Precision Recall F-

Measure 
0.9799 1 1 0.9897 

 

 
Fig.7 MSE variation for HNC-SDP model over JEDIT dataset 

4.1.5 Test Case-4 CAMEL Dataset 

Table 11 displays the confusion matrix for the CAMEL dataset before the execution of HNC-SDP. On 
the other hand, Table 12 represents the confusion matrix obtained after the execution of HNC-SDP for 
software defect prediction on the CAMEL dataset. 

Table.11 Confusion matrix for Camel data prior to prediction 
 NON-FAULTY FAULTY 

Normal 777 0 
Fault/Defect 188 0 

Table.12 Confusion matrix for Camel data later prediction 
 NON-FAULTY FAULTY 

Normal 770 7 
Fault/Defect 172 16 
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Table.13 Cumulative HNC-SDP Performance evaluation for Camel data 
Accuracy Precision Recall F-

Measure 

0.8114 1 0.8102 0.8952 

Upon observing the results (Table 13) for the 
CAMEL dataset, it is evident that the suggested 
HNC-SDP model demonstrates higher 
precision, although the accuracy of 81% 
indicates a high level of non-linearity and 
potentially lower overall performance. 
However, the higher values of F-measure 
(89.5%) and recall (81.2%) indicate that the 
proposed SDP model can still deliver reliable 
performance even with high non-linear inputs 
or training data. 

It is interesting to note that unlike in Figure 5, 
Figure 6, and Figure 7 where the error 
proneness decreased over iterations, the error 
(MSE) in Figure 8 for the CAMEL dataset shows 
fluctuations due to the non-uniform error 
distribution. Despite this, the proposed HNC-
SDP model demonstrates robustness by quickly 
stabilizing the performance with reduced error 
and progressing towards the optimal fitness 
value within a few iterations. 

 
Fig.8 MSE variation for HNC-SDP model over CAMEL dataset 

The swift convergence of any machine learning 
model can lead to superior accuracy and avoid 
saturation. In this study, the HNC-SDP model 
was developed as a heuristic-driven neuro-
computing model to achieve prediction results 
before encountering local minima and 
convergence issues typically faced by 
conventional neuro-computing models. The 
employed heuristic model, an improved genetic 
algorithm, ensured that the fitness value of 
candidate chromosomes or sub-solutions 
increased after each generation. The fitness 
value in HNC-SDP was defined as the inverse of 
MSE (F_i = 1/E_i), where E_i represents the 
fitness value of a chromosome. The reduction 

in MSE indicated better solutions and 
improved learning. 
The implementation of the proposed heuristic 
model, as observed in Figure 5 to Figure 8, 
effectively prevented local minima and 
convergence problems. Additionally, the use of 
SMOTE sampling followed by Min-Max 
normalization helped address over-fitting and 
data imbalance concerns. These factors 
collectively contributed to better learning and 
superior results in terms of accuracy, precision, 
recall, and F-Measure (as shown in Table 4, 
Table 7, Table 10, and Table 13). The overall 
performance summary of the proposed HNC-
SDP model over different input datasets is 
presented in Table 14. 
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Table.14 Summary of Intra-model performance assessment 

Dataset 
Accuracy 

(%) 
Precision 

(%)  
F-Measure 

(%)  
Recall 

(%) 

IVY1.7 88.35 99.36 93.80 88.83 

ANT1.8 81.45 93.43 88.67 84.38 

JEDIT 97.99 100.00 100.00 98.97 

CAMEL 81.14 100.00 81.02 89.52 

4.1.6 Inter-Model Assessment 

To assess the relative efficacy of the proposed 
HNC-SDP machine learning model, a 
comparison was made with the classical 
machine learning algorithm, namely Artificial 
Neural Network (ANN). The purpose of this 
comparison was to determine whether the 
inclusion of the proposed heuristic-driven 
neuro-computing concept (HNC-SDP) led to 
superior results compared to traditional ANN. 

The simulation of both the proposed HNC-SDP 
model and ANN was performed on four 
different input datasets: ANT, IVY, JEDIT, and 
CAMEL. The relative performance comparison 
is illustrated in Figure 9, Figure 10, Figure 11, 
and Figure 12. The data indicates that the 
average fault prediction accuracy of the 

proposed HNC-SDP model is 98%, while the 
ANN-based SDP models achieve an average 
accuracy of 75.48%. This demonstrates that the 
proposed HNC-SDP model outperforms the 
conventional ANN model. 

Furthermore, the proposed HNC-SDP model 
exhibits defect prediction accuracy of 98%, 
precision of 100%, F-measure of 98.9%, and 
recall efficiency of 100%. These high-
performance parameters validate the 
robustness of the proposed HNC-SDP model for 
software defect prediction purposes. Overall, 
the results indicate that the proposed model 
achieves superior performance compared to 
existing ANN models for software defect 
prediction. 

 
Fig.10 Comparison of the accuracy of HNC-SDP and ANN 
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Fig.11 Comparison of the Precision of HNC-SDP and ANN 

 
Fig.12 Comparison of the Recall of HNC-SDP and ANN 

 
Fig.13 Comparison of the F-Measure of HNC-SDP and ANN 

The F-measure, being the harmonic mean of 
precision and recall, provides a balanced 
assessment of the model's performance in 
defect prediction. The higher F-measure value 
in the proposed HNC-SDP model indicates 
better overall performance compared to the 

ANN algorithm. Additionally, the higher recall 
in the proposed HNC-SDP model signifies that 
it is more sensitive and capable of correctly 
identifying a higher proportion of true positive 
instances compared to the ANN-based SDP 
model. 
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To further evaluate the effectiveness of the 
proposed HNC-SDP model in comparison to 
other state-of-the-art methods, a qualitative 
study approach was employed. Various 
literature discussing machine learning-based 
software defect prediction (SDP) approaches 
were reviewed, and their corresponding 
performances were examined. The relative 

performance analysis between the proposed 
HNC-SDP model and other existing approaches 
is summarized in Table 15. This comparison 
demonstrates that the proposed HNC-SDP 
model outperforms other existing methods in 
terms of accuracy, precision, recall, and F-
measure, reaffirming its superiority in software 
defect prediction. 

Table.15 Various SDP strategies are compared in terms of performance 

Reference 
Machine Learning 

Techniques 
Accuracy 

(%) 
Precision 

(%) 
F-Measure 

(%) 
[35] LLE-SVM 81.1 82.5 80.4 
[35] SVM 69.4 68.1 69.7 

[36] SVM 55.3 88.0 83.2 

[37] Natural Gas 94.2 - - 
[37] Symbolic Regression 89.50 - - 

[37] RBP-NN 80.0 - - 

[36] LP 86.6 86.6 87.4 
[36] Naive Based 85.6 83.1 83.9 

[38] CPSO 69.2 67.6 - 

[39] T-SVM 75.8 84.1 80.9 

[38] GANN 73.4 81.6 - 

[38] AdaBoost 79.1 82.3 - 

[40] Random Forest 91.4 - - 

[41] k-NN 91.8 - - 

[41] C4.5 88.3 - - 

[41] J 48 90.9 - - 

[41] Levenberg-Marquardt 88.0 - - 

[38] NNEP-Evolutionary 88.8 81.2 - 

[42] PSO 78.7 - - 

[37] PSO-NN 97.7 - - 

Proposed HNC-SDP 97.9 1 98.9 

Based on the results presented in Table.15, it is 
evident that the proposed HNC-SDP model 
outperforms all other existing methods in 
software defect prediction. The superior 
performance of the proposed model 
demonstrates its robustness and effectiveness 
in handling various SDP tasks. 
 

5. Future Work 
The authors of the study found that certain 
intrinsic features, such as inheritance and 
polymorphism, were not sufficient as 
standalone features for effective classification 
in large-scale software. Instead, they identified 
CK metrics as a potential approach for 
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automatic software defect prediction using 
machine learning techniques. 
To optimize the performance of the LM-ANN, 
the authors chose to apply a GA algorithm 
instead of traditional methods. It is important 
to note that many existing heuristic-based 
models typically use a pareto combination of 
crossover and mutation probabilities, such as 
0.8 and 0.2 or 0.6 and 0.4. However, this 
approach can lead to a significant increase in 
the search space with each generation, leading 
to issues with convergence and local minima, 
which can adversely affect the overall model 
performance. Similarly, like other machine 
learning models, the challenge of avoiding local 
minima and convergence persists due to the 
high number of weight estimations required 
for the 17 input features 
 
6. CONCLUSION 
The growing demand for reliable and secure 
software systems has highlighted the need for 
effective software defect prediction (SDP) 
methods. However, traditional manual fault 
assessment methods for large and complex 
software architectures have proven to be 
challenging and resource-intensive. To address 
these issues, machine learning models have 
been proposed for SDP, but they often face 
limitations such as class imbalance, local 
minima, and convergence problems. 
In this dissertation, we developed a novel and 
robust heuristic-driven neuro-computing 
model, called HNC-SDP, for software defect 
prediction. Leveraging the Levenberg 
Marquardt Neural Network (LM-ANN), the 
proposed model exhibited adaptive learning, 
making it suitable for non-linear feature 
learning from defect data. To overcome local 
minima and convergence issues associated 
with high weight estimation for 17 input 
features, we introduced an improved genetic 
algorithm as a heuristic model to assist in 
weight estimation and update during learning. 
The integration of feature engineering 
techniques, such as resampling and Min-Max 
normalization, further enhanced the model's 
performance by addressing class imbalance 
and over-fitting problems. 

Through extensive case studies on four 
different defect datasets, including JEDIT, IVY, 
CAMEL, and ANT, the HNC-SDP model 
demonstrated its superiority over traditional 
neural networks and other state-of-the-art 
machine learning methods in terms of 
accuracy, precision, recall, and F-Measure. With 
accuracy reaching up to 98% and significant 
improvements in performance metrics, the 
proposed HNC-SDP model emerged as a highly 
effective solution for real-time SDP tasks. 
In conclusion, the HNC-SDP model offers a 
robust and efficient approach to software 
defect prediction, providing higher accuracy 
and better generalization compared to classical 
machine learning algorithms. By combining 
adaptive learning, feature engineering, and 
heuristic-driven optimization, the proposed 
model shows great potential in addressing the 
challenges of SDP in complex and diverse 
software architectures. This research 
contributes to advancing the field of software 
defect prediction and offers valuable insights 
for building reliable and secure software 
systems. 
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