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1. Introduction  
1.1 TOPIC DEFINITION 
An HNN is a device that implements artificial 
neural network (ANN) topologies and learning 
algorithms, taking use of the inherent 
parallelism of neuronal activity. To train and 
test neural networks, HNNs, or hardware 
neural networks, are a kind of artificial neural 
network (HNN). Energy-efficient neural 
network hardware capable of fully parallel 

processing is required for certain applications, 
such as streaming video compression. [1] A 
unique kind of ANN hardware (which may 
augment or replace software) is required since 
computers are involved.  
There are several advantages to this. Many 
cellular neural networks (CNNs) have been 
implemented on VLSI chips, which are capable 
of running faster than standard DSPs, 
computers, or even workstations.  
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Figure 1: The hardware implementation of an ANN 

 
Limiting the number of components and power 
needed may lower hardware implementation 
costs. This is crucial for high-volume, low-cost 
applications like consumer devices that 
process images in real-time. 
 
1.2 Problem Statement 
Sequential uniprocessor-based applications are 
prone to faults, which might cause them to stop 
working. This is a limitation of sequential 
uniprocessor programs (fail-stop operations). 
The CPU's design lacks redundancy. Despite the 
advent of multi-core personal computer 
processing architectures, effective fault-
tolerant solutions are still necessary to keep 
systems running. Unlike traditional designs, 
parallel and distributed architectures allow 
programs to continue functioning even if 
individual components fail. Parallel hardware 
solutions give substantial benefits for ANN 
applications that need high availability or 
security. It is difficult for (VLSI) HNN designers 
to map irregular and non-planar network 
architectures. This involves expensive 
computations and scattered communication, 
which is problematic. Hardware restrictions 
(especially analog components) may induce 
computational mistakes, preventing learning 
and leading in inaccurate outputs. Incorrect 
learning paths increase the number of cycles 
required to achieve convergence. Design issues 
occur because to non-linear activation 
functions. This topic has been explored earlier 
using various technologies and computer 

systems. Real-world applications need more 
than just an ANN model HNN; they require 
sensor gathering, pre- and post-processing of 
inputs and outputs, etc. HNNs are utilized in 
applications, although not as often as ANNs 
1.2 Motivation 
High-energy physics experiments (using 
Adaptive Solutions CNAPS boards for online 
data filtering and Level II triggers in the H1 
electron-proton collision experiment) and 
robotics are just a few examples. These new 
technologies have raised the requirement for 
fast surveys. Surveys have sprung up in the 
past, but nothing has stuck. On to the polling 
findings, which we shall discuss later. Glesner 
and Poechmueller (1989, 1992) used VLSI 
technology to create ANN models (1994). They 
provide one of the first complete overviews of 
the topic, including both electronic approaches 
and commercially available equipment. On the 
other hand, Heemskerk (1995) describes 
neurochips developed by industry and 
research. (1996) studied two basic parallel 
system designs: conventional digital 
components and bespoke processors.  
 
2. Related Works 
In a brief ANN issue, the researchers found that 
training times on two widely available 
computers were significantly slower or 
marginally faster than on a serial workstation. 
Aybay et alcriteriasimplifies.'s the analysis of 
digital neurocomputers and neurochips (1996). 
For example, quantization and associated 



Volume 15| February 2023                                                                                                                                   ISSN: 2795-7640 

 

Eurasian Journal of Engineering and Technology                                                                           www.geniusjournals.org 

         P a g e  | 6 

weight discretization’s, analog nonuniformities, 
and nonideal responses are discussed in 
Moerland and Fiesler (1997). Moerland and 
Fiesler (1997) offer a friendly learning method 
that accepts imperfect responses. Sundararajan 
and Saratchandran (1998) describe in detail 
the parallel implementation components of BP 
neural networks, ART neural networks, RNNs, 
and MIMD (multiple instruction multiple data) 
using MPI interface (1998). This book is 
divided into sections that each concentrate on a 
particular subject, such as network parallelism 
and training set parallelism in BP-based neural 
networks. Burr's methods allow for early 
prediction of HNN chip size, performance, and 
power consumption (1992,1991). It can also 
predict future capacity and performance of 
neural networks. Hammerstrom has been 
investigating digital neural networks (ANNs) 
since the late 1990s (1998). In Reyneri's 2002 
comments, different existing modulations are 
compared for precision, response time, power 
consumption, and energy demands. Zhu and 
Sutton (2003) discussed FPGA-based neural 
network design difficulties. Assemblage and 
simulation, density augmentation, and 
topological flexibility are the reconfiguration 
aims discussed in this section (integer, floating 
point, and bit stream arithmetic). Many key 
areas of hardware implementation technology 
have been identified and investigated, 
including the use of co-design approaches for 
hardware and software. The recent 
investigation [3] by Diasa et al. utilizing 
commercial gear was one of the most extensive 
(2004). Spiking Neural Networks may now be 
built on FPGAs, following Schrauwen and 
D'Haene's work (2005). (SNN). Maguire et al. 
(2007a) analyze FPGA-based SNN models, 
emphasizing significant difficulties. Bartolozzi 
and Indiveri explain their findings in a 
hardware comparison of spiking synaptic 
models (2007). Smith analyzes digital and 
analog VLSI implementation choices for time-
varying neural networks (2006) Hammerstrom 
and Waser [4] present an engaging historical 
critique of digital, analog, and HNN approaches 
across many decades (2008). Indiveri et al. also 
examine possible issues that may occur in the 
future when cognitive skills are brought to 

these systems. Specialized volumes on a variety 
of HNN topics are now available and gaining 
popularity. Austin created a RAM-based HNN 
library (1998). Also, Ormoindi and Rajapakses 
published a book on FPGA-based artificial 
neural networks (ANNs) (2006). There are 
several examples and lessons learned from a 
large-scale FPGA-based ANN implementation 
in this book. In a curated collection, Valle 
outlines the many approaches to developing 
smart adaptable devices. There are various 
reviews and edited publications on the subject, 
although most of them are either outdated or 
concentrate in one area of HNN research. There 
are several ways and concepts for HNN design 
in the literature and commercial uses. For the 
previous two decades, this work has attempted 
to provide an overview of HNN models, 
hardware design techniques and applications. 
Our research includes a number of notable 
works that have appeared positively in the 
literature. For example, perturbation learning 
(1992) and constructive learning (1993) are 
not included in this review, as are cascade 
error projection (1995, 2000), local learning 
(2004) (including spike-based Hebbian 
learning) and local learning (2004). (2007, 
2008) The research focuses on MLP with back 
propagation [5] (1994) and radial basis 
function networks (19) (1994, 2000) as well as 
HNN architectures (1994,1996). 
3. Neural Network Chips  
These neurochips build HNNs, which may 
subsequently be used to construct ANNs. This 
incorporates neural associative memory on a 
RAM or FPGA chip. There are other neural 
chips for digital and analog processing. A 
general-purpose neurochip can build several 
neural algorithms for one application, whereas 
a special-purpose neurochip can replicate a 
single neural algorithm for many applications. 
A neurochip's activation block is constantly 
present. This block performs weight x input 
multiplication and summation. The host 
computer may perform some of the tasks 
required by the chip-based blocks such neuron 
status, weights, and activation functions. 
Weights may be stored digitally or analoguely, 
and loaded statically or dynamically. The 
neuronal weights.  
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Figure 2: An introduction to hardware-based neural networks on chips. (a) highlights the most 

important AI chip benchmarks, (b) display and use of computers with in-memory data, (c) 
conceptualization of SNN, (d) crossba 

3.1 Neurochips that are digitally implanted 
CMOS technology is widely used in digital 
chips. Bit-slice processors, SIMD processors, 
and systolic arrays are all examples of digital 
chips. There are several benefits to digital 
technology, including as well-understood 
manufacturing methods (RAM weight storage), 
and programmable designs. As the slowest link 
in the network, synaptic multipliers are the 
most difficult to bypass. Each module of a 
processor processes a single bit field of an 
operand. Their fundamental building blocks 
(often single neurons) may be used to 
construct more complex and precise neural 
networks. One of the earliest commercial HNN 
devices was the MD1220 Neural Bit Slice from 
Micro Devices (1990). There are eight neurons 
with hard-limits thresholds and 16-bit 
synapses with 1-bit inputs, both of which are 
quite rare. There is no limit to the amount of 
data this device can process in synapses since it 
operates approximately 9 million clock cycles 
per second The Philips Lneuro microprocessor 
from 1992 and the Neuralogix NLX-420 neural 
processor both use slice designs (1990). Off-
chip learning is vital for slicing architectural 
design. Simultaneous Multi-Data Set Execution 
(SIMD) is the acronym for this (1991). 
Programmable systems are required to better 
fulfill ANN requirements, and most of these 
solutions adapt SIMD. A PE1 component's 

settings are set using an instruction word with 
horizontal encoding. Conventional ANN 
applications may utilize it since it lacks 
address/issue logic and employs a basic 
instruction decoding approach. Adaptive 
Solutions' 1990 N64000 CPU has onboard 
memory for weight storing and an integer 
multiplier. Kim et al. [6] demonstrated an LSB-
based SIMD neural network processor for 
image processing. There are twenty-four 
activities that may be performed by the 
suggested CPU. A PU has a 2K-word Local 
Memory, a PE, and a ROM. The synaptic 
multipliers in asynchronous array-based 
designs are more efficient since each PE 
performs one step of a computation in parallel 
with the other PEs. PEs. Siemens' MA-16 
(1993) uses 16-bit components to perform 
multiplication, subtraction, and addition on a 4 
by 4 matrix. The outputs and accumulators of 
the multiplier have a precision of 48 bits each. 
While neural transmission is handled using off-
chip look-up tables, weights are stored in off-
chip RAM. A excellent choice for artificial 
neural networks (ANNs) that need fine-grained 
parallelism is a synchronous array (systolic 
array). Administration and interaction with a 
host system are made more complicated by 
using this strategy. The vector processor arrays 
from 1992, the common bus design from 1994, 
the ring architecture from 1995, and the 
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TORAN (Twoin-One Ring Array Network) from 
1996 are examples of systemic high-
performance neural network (HNN) systems. 
(1999). Researchers at the Massachusetts 
Institute of Technology (MIT) developed the 
parallelism-capable systolic processor array 
called SAND (Simple Applicable Neural Device). 
An RBF and Kohonen feature map may be used 
to map the neurochip. It was a low-cost 
alternative at the time, with an input frequency 
of 50 MHz and a data bit depth of 16 bits. A 
single SAND chip can do 200 MCPS using four 
16-bit multipliers and four 40-bit adders. 
Because of the difficulty in assigning weights to 
neurons in neural networks, In the early 1990s, 
Wang developed an analog recurrent neural 
network (1992). It required substantial 
mapping and programming for analog 
implementation. Hung and Wang (2003) used a 
one-dimensional systolic array with ring 
connections to implement the procedure 
digitally. For realignment, this smaller model 
made use of FPGA-based components. The 
assignment issue may be simplified by taking 
use of the dataset's regularities. In the digital 
world, there are more HNN designs available. 
In order for classification algorithms to 
perform better, it may be necessary to create 
data ensembles (Bagging, 1996). In certain 
cases, extra training sets may be generated by 
selecting and substituting individuals at 
random. Bagging enhances performance when 
used with unreliable classifiers. Because even 
little modifications to the training data may 
have a significant impact on the final classifier. 
Bagging ensembles used in a three-dimensional 
circuit may increase pattern recognition 
efficiency. In addition to decision trees and 
threshold logic units (TLUs), the ensemble 
employs threshold networks (TLUs). 
Depending on the number of network 
ensembles or TLU/input pairs per network, we 
provide a scalable network structure. The 
learning rule's ability to create a proper 
equation and the distance needed by a PE are 
directly related to each other (SOFM). Problem-
solving gets more complex as more PEs are 
involved. To build a learning algorithm, 
Rueping and colleagues (1994) recommend 
using the following digital architecture: A large 

number of PEs may be packed on a single chip 
using the Manhattan Distance and a specific 
adaption factor handling in this design [8]. In 
terms of size, the circuitry can generate 10 10 
maps on a single chip with only 28 pins. Using 
just binary data and a 50/50 map, a speed of 
>25 GCPS may be achieved. Dynamic Synapse 
Neural Networks have been used to study an 
acoustic sound detection model. DSP Starter Kit 
TMS320C6713 was used to make the model (a 
floating-point DSP processor). 90 percent of 
the time, the new hardware accurately 
classifies and pinpoints the location of gunfire. 
3.2 Analog Neurochips  
Intel's ETANN and Synaptic's Silicon Retina are 
two early analog processors that were created 
from scratch. Each of the Intel 80170NX's 64 
neurons is directly connected to every other 
one in the system (1990). On this general-
purpose neurochip, analog nonvolatile weights 
are stored using floating gates, while four-
quadrant multiplication is performed via 
Gilbert-multiplier synapses. After the learning 
phase, ETANN depends on a host computer to 
ensure that the weights can be downloaded to 
the chip, rather than allowing on-chip learning. 
The device's maker claims that it can calculate 
at a pace of 2 GCPS with an accuracy of 4 bits 
and a bus size of 64 bits. An additional 10,240 
synapses may be customized. Direct pin/bus 
connections between ETANN chips may be 
used to create networks of up to 1024 neurons 
and 81,920 weights. For real-time visual 
processing, the Mod2 Neurocomputer (1992) 
made use of ETANN chips. The MBOX II (1994), 
an analog audio synthesizer equipped with 
eight ETANN chips, included these ETANN 
chips later in its existence. It is common to 
need to adjust the distance between the input 
vectors and the weights when using ANNs 
based on competition, such as the Kohonen 
SOFM. An analog implementation of a SOFM 
often results in a tiny circuit block that 
correctly computes the distances between two 
points. " To determine the distance between 
two points, two commonly used metrics are 
Euclidean and Manhattan. Distance 
computation circuits employing the Euclidean 
distance function technique have been 
constructed by academics such as Lanbolt and 
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Churcher (1992) and Churcher et al. (1993). 
(1993). (1993). For calculating the Euclidean 
distance metric, Churcher et al. [9] (1993) 
constructed extensively utilized circuits in the 
early 1990s. An analog VLSI version of several 
Euclidean distance computation circuits was 
provided by Gopalan and Titus (2003) and may 
be used as part of a high-density SOFM 
hardware implementation. In a mixed signal, 
CMOS feed-forward system, Liu et al. (2002) 
show the use of on-chip error-reduction 
technology for real-time adaption. For 
oscillating operating conditions, MOSIS used 
Orbit 2m n-well technology to build the device, 
and weights were stored in capacitors. When 
used in conjunction with the Random Weight 
Change (RWC) algorithm, which does not need 
an intended neural network output to be 
known in order to calculate error rates, the 
implemented learning technique is a genetic 
random search algorithm. In spite of its little 
stature, the RWC chip was able to effectively 
suppress unstable oscillations that simulated 
combustion engine instability during testing. 
Weight storage remains a problem, which 
drastically limits the number of applications. 
Morphological neural networks may be 
implemented using the discrete analog 
hardware model of the discrete analog 
hardware model proposed by Ortiz and Ocasio 
(2003), rather than multiplication or addition. 
It has been shown that the inherent quadratic 
nonlinearity of the synapses affects learning 
convergence and vector direction optimization 
by using a MOSFET-based analog signal 
synapse model developed by Milev and Hristov 
(2003) in a typical 0.35-micron CMOS 
manufacturing process. Once this is done, the 
synapse concept is put into practice on a VLSI 
chip, which has 2176 synapses and can be used 
to extract fingerprint features. Mixed-mode 
analog VLSI is used to build a signal processing 
circuit for a Continuous-Time Recurrent Neural 
Network, where state variables are 
represented by voltages and neural impulses 
conveyed as currents, according to Brown et al. 
(2004). Brain signals may be accurately 
processed across great distances using current, 
resulting in a scalable and resilient neural 
signal processing system. On the other hand, 

Bayraktaroglu et al. (1999) describe ANNSyS as 
a machine learning technique that uses an 
approximated version of on-chip training to 
build analog neural networks (ANNs). Using a 
SPICE circuit simulator and an assembler for 
MOS technology, the synthesis system may be 
used to create analog neural networks.  
3.3 Neurochips with a Mixture of Functions 
For maximum system performance, hybrid 
chips combine digital and analog components. 
When it comes to determining speed and 
weight, analog internal processing is the 
preferred method. Example: The University of 
Twente Mesa Research Institute developed a 
hybrid Neuro-Classifier in 1994 that uses five-
bit digital weights to reach a feed-forward 
processing rate of up to 20 GCPS [10.] This 
device contains 70 analog inputs, six hidden 
nodes, and one analog output. Even if the final 
output has no transfer function, several chips 
may be stacked together to increase the 
number of hidden units. A matrix-vector 
multiplier for artificial neural networks (ANNs) 
is shown by the authors utilizing digitally 
recorded synaptic strengths (2004). Even 
though analog operations have accuracy 
constraints, it was revealed in 1991 and 1994 
that combining cortical neurons into 
populations where each neuron's signal is 
restored to an appropriate analog value via a 
collective technique allows them to compute 
consistently. In order to create cortical 
amplifier networks with a linear threshold 
transfer function, Douglas and colleagues 
suggest a hybrid analog-to-digital CMOS design 
(1994). For neural co-processing, Romariz et al. 
suggest a hybrid architecture that makes use of 
digitally controlled multiplexing of analog 
multipliers and capacitors to simulate the 
experience of numerous levels. With the use of 
a predetermined collection of analog 
multipliers and capacitors, this system 
attempts to imitate many levels of experience 
(analog memory). It's been proven that hybrid 
architecture can enable on-chip learning 
(1999). The design of a circuit relies heavily on 
the use of analog and digital components. The 
analog ANN unit uses a charge-based circuit 
architecture to calculate neural functions. A 
ten-bit vector is sent to each of the twenty 
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neurons in this layer. Neurons are selected as 
winners depending on how closely the 
recorded pixel patterns and current input 
vectors match. Digital generation may do all of 
these duties, including error correction, circuit 
control, and clock generation. 
3.4 Implementations Using FPGAs 
Hybrid chips combine digital and analog 
components to enhance the overall 
performance of the system they're installed in. 
Speed can be determined using analog internal 
processing, but weights may be modified using 
a digital internal processing method instead. 
Example: Neuro-Classifier developed by the 
University of Twente Mesa Research Institute 
in 1994 used five-bit digital weights to reach a 
feed-forward processing rate of up to 20 GCPS 
[10.] It has 70 analog inputs, six hidden nodes, 
as well as a single analog output. Even though 
the final output has no transfer function, it is 
possible to stack multiple chips together to 
increase the number of hidden units. 
Employing digitally recorded synaptic 
strengths, the authors explain how to build a 
matrix-vector multiplier for artificial neural 
networks (ANNs) (2004). Grouping cortical 
neurons into populations in which each 
neuron's signal is restored to an appropriate 
analog value via a collective technique allows 
them to compute consistently even when the 
precision constraints of analog operations are 
in place, as shown in 1991 and 1994. Cortical 
amplifier networks with a linear threshold 
transfer function may be designed using an 
analog-to-digital CMOS hybrid architecture, as 
proposed by Douglas and collaborators (1994). 
Romariz et al. propose a hybrid neural co-
processing architecture that uses digitally 
controlled multiplexing of analog multipliers 
and capacitors to mimic the experience of 
several layers. Using a predetermined set of 
analog multipliers and capacitors, this system 
replicates several layer experiences (analog 
memory). A hybrid architecture has shown the 
feasibility of learning on-chip (1999). Among 
the most important features of the circuit 
architecture are analog and digital 
components. A charge-based circuit 
architecture is used in the analog ANN unit to 
calculate neural functions. Neurons in this 

layer get a ten-bit vector input from twenty 
other neurons in the same layer. Based on how 
closely the stored pixel pattern and the current 
input vector match, winner-takes-all units pick 
a single neuron as the winner. Error correction, 
circuit management, and clock creation are all 
possible with digital generation.  
 
4.  Other Approaches 
Szabo and colleagues (2000) propose for using 
bit-serial distributed arithmetic in a bit-
serial/parallel technique to increase the 
performance of digital filters. Their matrix-
vector multiplier approach is developed using 
optimized CSD (Canonic Signed Digit) encoding 
and bit-level pattern coincidences. The 
architecture may be developed and used in 
neural network design environments using 
either an FPGA or an ASIC. Both MLPs and 
neural networks benefit from the proposed 
matrix multiplier structure (CNNs). 
4.1 Applications of Associative Neural 
Memory Techniques 
Threshold operations are used to map between 
two pattern sets in an Associative Neural 
Memory, a kind of artificial neural network. 
This problem was investigated by Palm et al. 
(1993) using a very simple model of a neural 
network in which the input, output, and link 
weights are all binary. These circuits were 
designed using analog, digital, and mixed signal 
techniques by Ruckert et al. [14] in 1991 and 
2002. NPU (neural processing unit), an I/O 
coding block, and an on-chip controller are 
some of the fundamental elements of digital 
architecture (synchronization, control, and 
testing instructions). It is calculated that in this 
circumstance, the rate of learning is 0.48 
GCUPS. There are 16 neurons and 16 synapses 
on the test chip, which is built using 1.2-CMOS 
technology and the test chip. The number of 
neurons and inputs may be increased to 4000, 
with each neuron receiving 16,000 inputs. The 
addition of additional of these chips might 
make the overall design more difficult. There's 
an ANM (Automatic Neural Network) form of 
the Willshaw et al. (1969) ANM model in which 
the output pattern is the label of the stored 
pattern that's most similar to the input pattern 
(input pattern). On-board training and testing 
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for high-performance pattern recognition 
applications are discussed by Justin et al. [15]. 
(2005). We suggest Hassoun's edited book on 
ANM models to anybody looking for a 
convenient source of knowledge (1993). 
4.2 Implementations based on RAM 
Bledsoe and Browning (1959) first developed a 
RAM-based neural network (RNN), which is 
frequently referred to as a weightless NN. To 
develop lookup tables, random access memory 
may store neural functions (RAM). Ten times 
faster than previous models, they may be 
learned in less than a day utilizing low-cost, 
easily accessible technology. Look-up tables 
rather than weights are used for training RNNs, 
unlike ordinary neural networks. Pattern-
recognition systems, such as RNNs, may be 
employed in a number of scenarios, such as 
photo recognition, for example. RNNs are 
extensively covered in the book (1998,1999). 
Aleksander and colleagues created WISARD, 
the first general-purpose image recognition 
system based on RAM circuits (1984). The 
learning method and hardware 
implementation of a probabilistic RAM 
network are both explained in depth (1992). In 
medical imaging, a SAT (Sum and Threshold) 
processor was first described by Kennedy and 
Austin (1994) as a customized hardware 
version of a binary neural image processor. 
Advanced Distributed Associative Memory 
(ADAM) is compatible with the SAT processor 
when it comes to memory. In order to 
recognize and extract information from images 
in a variety of situations, ADAM is a binary-
weighted, two-layer neural network. C-NNAP, 
according to Austin et al., is used to deal with 
issues related to item identification (1995). 
MIMD, an array of ADAM processors, will help 
solve the identification of objects issue in a 
distributed manner (Cellular Neural Network 
Associative Processor). 
 
5. Conclusion  
As an introduction to the hardware 
implementation of AI, the following examples 
of HNN prototypes from academia and industry 
are presented (ANNs). Research on HNN began 
in the 1990s, but has yet to be put into use in 
the real world. ANN models, hardware design 

techniques, and applications are examined to 
determine the current state of the field. In 
order to be applicable in a broad variety of 
applications, the model must be mapped onto 
reliable and energy-efficient hardware. 
Complete ANN models in the brain and on 
chips are being studied by researchers (digital, 
analog, hybrid). FPGA-based versions of 
neurons and hardware for spiking neural 
networks are all provided. RAM-based parallel 
digital implementations, bit slices, and SIMD 
structures will also be investigated. Associative 
brain memory will also be examined. Consider 
the current status of research before making a 
future forecast. 
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