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The development of oil and gas fields can 

be considered as a dynamic system in which, 
under the influence of input variables 
(technological modes of operation of wells), the 
controlled variables (oil and gas reserves in 
productive strata, reservoir pressure) change. 

Oil and gas fields, as objects of modeling 
and optimization, are characterized by a 
significant number of interconnected 
hydrodynamic, technological and economic 
parameters that change in the process of system 
control [1,2].  

Recently, a number of problems have 
arisen for managing unstable processes in such 
spatially distributed objects as geofiltration. In 
this regard, it was necessary to develop an 
appropriate theory that takes into account 

certain specific conditions for the physical and 
technical feasibility of control laws, giving 
effective methods in the rational development 
of oil and gas fields [3,4]. 

The paper will show the possibility of 
applying methods for solving some problems of 
optimal control of systems described by partial 
differential equations. Let for a given control 

( )g х  state of the system ( )u х   can be found 

from the solution of a differential equation with 
partial derivatives of an elliptic type, as applied 
to oil fields. 

Let for a given control  ( )g х  state of the 

system ( )u х  can be found from the solution of 

a partial differential equation of elliptic type 
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The state ( )P х  (output parameters of the object) is defined as  

                                     ( ) ( ), ,P х u x x S=                                               (3) 

where  - bounded enclosed area n - dimensional space 
nR ; 0 0,S S S S  =   =  - 

region border   ; 

, 1

( ) ( ) ( )cos( , )
n

ij xj i

i j

u
x a x u x n x

N
=


=


  - function derivative ( )u x  along the co normal to the 

surface S  , n - internal normal vector to S . 
In view of the fact that it is not possible 

to prove the existence of a solution to the 
formulated optimal control problems in the 
space of classical solutions of the differential 
equation (1), we will consider these problems in 
the space of generalized solutions. 

According to [5-9], the function 
( )u x W  is called a generalized solution of 

differential equation (1) if for any function 
( )x W   the identity   

    

, 1

( , ) ( ) ( ) ( ) ( ) ( ) .
n

ij
i ji j S

u
u a x x a x u x x dx g dx

x x


   

=

  
 = + = −

  
 

             (4) 

Here and below, the following notation is used  

( ),[ ( )]g gL L S -  the Banach space consisting of all measurable functions that are Lebesgue summable 

in the domain [ ]S  with a degree g , with the norm   

                                           

1

[ ]

( ),[ ( )]
( ) ,

g

g

g g

S

L L S
u u x dx





 
 =
 
 
  

                                            
( ),[ ( )]

( )

max ( )
L L S

g g
x S

u vrau u x




= ; 

2
( ), 1,2,iW i =  hilbert space consisting of all elements 2 ( )L  , having generalized derivatives up to 

the order i  inclusive, square summable over   with norm [5] 
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W - set of functions that belong  2
( )iW  , equal to zero on 

0
S ; A

W - subset W , consisting of functions 

equal to zero on a measurable set .A S  As is known [8,9], with sufficient smoothness of the boundary 

( ),   W  and 
А

W - closed subspaces of space 2
( ). ( , )iW Z x y - the space of continuous linear 

operators from the topological space Х   into the topological space Y . 
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 Region   belong to class 
2C +

,  0 1.                                            (5) 

 Regarding the parameters of the object, we will assume that the conditions (5) 

                                 ( ), ( ), , 1,2, ,
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functions, ( )a L
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  . Exist , 0    such that for any n - dimensional vector  
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                                                  0.Du Bg+ =                                                      (13) 

 Let be С - operator that maps functions u W  operator that maps functions  S  
                                                    .Cu P=                                                               (14) 

As is known [9, 10], under conditions (5) the trace  ( )P х  to the border S  any function u W  

is an element of the complete normed space  
1

2

2
( ) ( )H S W S=

, owned 
2
( ).L S  There is an inequality 

.
H W

u a u  Therefore, the range of the operator С  belongs ( )H S  and ( , ( )).С Z W H S   

 
Using the results of the continuation theory [10] 
and the averaging of functions [9], one can 
verify that the space ( )H S  satisfies the 

assumptions of the system of equations adjoint 
to (13), (14) of the following form  

* *

*

0
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where * * *, ,D C B  - operators conjugate 

, , .D C B   

 For a given 
2
( )v L S  function y W , 

satisfying (15) can be found from the solution of 
the equation  
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Operator 
*B  assigns functions y W  her 

trace. To the border S . 
 Remark 1, 
 The solution of identity (4) can be 
interpreted as follows. By virtue of the theorem 
from [9], under conditions (5) - (9), the function 
y W , satisfying (4) belongs to the space  

2

2
( )W   for any strictly internal region  

    , which means that for almost everyone 

х  this function satisfies (1)[8]. With this in 
mind, and using arguments completely 
analogous to those given in [9], it is easy to show 
that for any W   
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where 
k

  - arbitrary increasing sequence of 

regions having a sufficiently smooth boundary 

0k k
S S  =  ,  contained in    and striving 

for . .  

 The following theorem on the properties 
of equations (13), (14) is valid. 
 Theorem 1. 

Under conditions (5) - (9) for any 

function 
2
( )g L S  and measurable space 

А S  there is a point 

2
( , , ) ( ) ( )

A A A
g u P L S W H S   , satisfying 

equations (13), (14) and conditions  
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function  
A A

u W  can be found from the 

solution of the equation  
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Wherein            
  
 

There is only one function 
A A

u W , satisfying 

(17) functions 
A

g  and 
A

P   belong respectively 

to the space 
2
( )L S  и ( )H S  . 

 Proof: 

Let us show that the function 
A A

u W ,  

satisfying identity (17) exists and is unique. 
 Due to conditions (7) - (8) 
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Therefore  
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W
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min( , ) 0
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c
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 
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Because  ( , )u  - continuous bilinear form in 

space ,
A

W  а 
2( \ )

( , )
S A

L
g  - continuous linear 

functional in 
A

W . (see (11), (12)), then under 

conditions (18) there is a unique element 

A A
u W  , satisfying for anyone A

W  identity 

(17), (the Vishink and Lax-Milgrange lemma 
[6]).  

 Let us show that 
A

u W  satisfies 

identity (4). According to the theorem from [9], 

under conditions (5) - (9),
2

2
( )

A
u W    for any 

subset      c fairly smooth border   , 

with    general part A A , and 

consequently, 2
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u
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
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  
[10] and 

A
u  suits 

almost everyone х  equation (1) (see 

remarks 3.1). Therefore, for any 
\S A

W   the 

identity [9] 
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 Since under conditions (5) the subspace 
of functions W , represented in the form 

  = + , where 
\

,
S A A
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This identity proves that the point  ( , , )
A A A

g u P   

satisfies (13), (14) and conditions (16). 
 Theorem 2. 
 If point ( , , )g u P  satisfies equations 

(13), (14), then 

a)  
2

1 2( )
/ ( , ) /,

SW
u a g P L  

b) 
2( )

2
/( , ) /

S
L W H

g a u   for anyone  

( ).H S
                      

 Here and further 

2
, ( ), , , , ( ).g v L S u y W P H S    

 Proof. 
 If point ( , , )g u P  satisfies equations 

(13), (14), then 
2

( )
( , ) ( , ) .

L S
u u g P = −  In view 

of this and inequality (18),                        
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Since any function ( )H S  can be extended 

into the region   , so W  and 

3W H
a  , where is the constant 

3
a  does 

not depend on   [8], then using (11), we obtain 

the inequality                    
                       

2
( ) 2

/( , ) / / ( , )/
L S W W W H

g u a u a u    =  

,  
which completes the proof of theorem 2. 
 Property 3. 
 Let the point ( , , )g u P  satisfies 

equations (13), (14), then 
а)  if ( ) 0, \ , ( ) 0,g x x S A P x x A    , 

then ( ) 0P x   for almost everyone x S , 

б) if ( ) 0, \ , ( ) 0,g x x S A P x x A  =  ,  

then ( ) 0g x   for almost everyone x S , 

Here  A  measurable subset belonging to S . 
 Proof. 

a) we will carry out the proof using the 
method proposed in [9] for the same theorems. 

Let the point ( , , )g u P  satisfies 

equations (13), (14) and  

\
max ( ) 0, min ( ) 0.

x S A x A
vrai g x vrai P x
 

   Then 

for any  
A

W   the identity 
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S A

u g dx  = −   . 
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\
min ( ) 0,

x S A
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

  then  

                                ( , ) 0,v    где 

( ) ( ), .v x u x x= −                                                (20) 

Let's pretend that  
                                    

max ( ) 0
x

vrai v x M


=   .                                                                        

(21) 

Let be 
0( ) max( ( ),0)v x v x= . Because 

( ) ( ) 0v x u x= −   for almost everyone х А то 

0

A
v W , it's clear that  

0

\
max ( ) 0

x S A
vrai v x


 .  

Therefore, in (20) one can put  v = . Then, 

using (18), (20) , we obtain the inequality  
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, 

where  
0

{ : ( ) 0}x v x =   , which proves 

that the measure is a set 
0

  is equal to zero, 

which contradicts assumption (21). In view of 

this max 0
x

vrai v


 , which means 

( ) ( ) 0u x v x= −  , for almost everyone x . 

Since under conditions (5) the function u W  

the equivalent of a continuous    function, 
which is uniquely extended by continuity for 
almost all points of the boundary [10], then 

( ) ( ) 0P x u x=   for almost everyone x S . 

 b) let point ( , , )g u P  satisfies (13), (14) 

and conditions 
( ) 0, , ( ) 0, \P x х А g x x S A=    . As 

noted in [10], under conditions (5) there is a 

sequence of functions 
2 ( )ku C +  , 

converging to ( )u x  according to the norm of 

space W  and satisfying the conditions 
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( ) ( ) 0, ,

k k

k k

P x u x х S А

P x u x х A S

=  

= =  
 

where ( ), 0,1,2, 0 1iС i +  =   - 

space of Hölder continuous functions with 

exponent   in area  =    together 

with derivatives up to i   order inclusive. Take 
sequences of functions    
                    

1 ( ), , 1,2, , ; ( ), 1,2, ,k k

ij
a C i j n a C k +  =   =      

                         (22)   satisfying conditions (6) - (9) 

and converging to ( ), ( )
ij

a x a x  according to the 

norm ( )L

 . 

 Let's find functions ( )ky x  from the 

solution of the equation 
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under boundary conditions 

                                                  ( ) ( ).k ky x P x=                                                                           

(24) 
According to the theorem from [9], under the 
conditions formulated above, there is a unique 

function 
2( ) ( ),ky x С +   satisfying (23), 

(24). Compute ( ) ( ), .
k

k y
g x x x S

N


= 
  

Note 

that 
2

( ) ( )kg x L S  and for any W  the 

identity 
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y
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
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. 
By virtue of the theorem from [9], under 
conditions (22) 
                                                                   

lim 0.k

Wk

y u
→

− =                                                                      

(25) 
Having carried out calculations that are 
completely similar to those given in [9], we can 
show that under conditions (22), (25) 

                                                      

lim/ ( , ) ( , )/ 0,k k

k

u y W   
→

− =   . 

Because 

2
( )

/ ( , ) ( , )/ /( , ) /k k k

L S
u y g g    − = − , 

then for any ( )A S  

                                                           

2
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lim/ ( , ) / 0.k

L S
k

g g 
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− =                                                                

(26) 
Due to the fact that 

min ( ) min ( ) 0k k

x x S

y x P x
 

 =  [9], and 

( ) 0, ,kP x x A=   then ( )ky x  reaches a 

minimum at any point  x A . 

 Taking into account that  

( ) ( )
k

k y
g x x

N


=


- derivative along the inward 

direction to the boundary S , we have  
                                                                   

( ) 0, .kg x x A                                                                      

(27) 
Since the set of functions ( )H S , equal to 

zero on \S A  tight in 
2
( )L A

, then from (26), 

(27) we obtain ( ) 0kg x   for almost everyone 

x A  and the theorem is proven. 
The above theoretical study on the 

analysis of system states in the process of 
optimal control of a deterministic control 
object can be successfully applied in a 
qualitative study of applied problems in the 
development of oil fields.  
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