
Volume 13| December 2022 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e | 11

Introduction:
 Today, most web sites consist of a very
large database. These include stock exchange
prices, product prices in online stores, and
information about employees and students in
educational institutions of offices and
organizations. If you want to download this
information, you will have to create a new
document and copy and paste each information
into the document. To solve this problem, it is
now possible to parse the web application
through the python programming language.

Web scraping is an automatic method of
extracting large amounts of data from websites.
Most of this data is unstructured data in HTML
format that is then converted into structured
data in a spreadsheet or database for use in
various applications. There are different ways to
perform web scraping to extract data from

websites. These include using online services,
custom APIs, or even creating your own Web
scraping code from scratch. Many large
websites like Google, Twitter, Facebook,
StackOverflow, etc. have APIs that allow you to
access their data in a structured format. This is
the best option, but there are other sites that do
not allow users to access large amounts of data
in a structured form or are not technologically
advanced. In this case, it is effective to use web
scraping to scrape the website for information.

Research methodology and results:

Web scraping requires two parts. A web
crawler is an artificial intelligence algorithm
that crawls web applications in search of
relevant information by following links on the
web. On the other hand, scraping is a special tool
designed to extract data from a website. The

Developing Software for
Downloading Large Amount of Data

from Web Applications Using the
Python Programming Language

Q. Asqarov Assistant teacher of the department “Algorithmization and
programming technology”

B.Geldibayev Assistant teacher of the department “Algorithmization and
programming technology”

A
B

S
T

R
A

C
T

 In this article explores software development for downloading large amounts of
data in web applications using the beautiful soup module in the python programming
language. Web-scraping is the conversion of large amounts of data into a spreadsheet or
API (Application programming interface) using python programming. In the conducted
research, was developed software and results were obtained. This software can directly
access data in web applications using Hypertext Transfer Protocol or a browser.

Keywords:
Python, web scraping, API, beautiful soup module

Volume 13| December 2022 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e | 12

design of the parser can vary depending on the
complexity and scope of the project so that it can
extract data quickly and accurately.
Installing required libraries:

The easiest way to install external
libraries in Python is to use pip. pip is a package

management system used to install and manage
software packages written in Python (pic-1).

Accessing HTML content from a web page:

import requests
URL = " https://www.geeksforgeeks.org/data-structures/ "
r = requests.get(URL)
print(r.content)

Let's analyze this code in sequence:
- The requests library is imported first.
- Then enter the url address of the site we want to parse.
- An http request is sent to the specified url, and the response received from the server is stored

in the r variable.
- At the end, the html content of the page is printed.

Scraping HTML content:

import requests
from bs4 import BeautifulSoup

URL = " http://www.values.com/inspirational-quotes "
r = requests.get(URL)

soup = BeautifulSoup(r.content, 'html5lib')
If an error occurs with the htm5lib library, import the library using import html5lib or install it in
the console using pip install html5lib
print(soup.prettify())

What's really cool about the BeautifulSoup library is that it's built on top of HTML scraping

libraries like html5lib, lxml, html.parser, and more. In this way, the BeautifulSoup object and the parser
library can be created at the same time. In the example above,

soup = BeautifulSoup(r.content, 'html5lib')

We create a BeautifulSoup object by passing two arguments:

- r.content : This is the raw HTML content.
- html5lib : Specifying the HTML parser we want to use.
At the end of the program, soup.prettify() is printed, which provides a visual representation of the

parse tree generated from the raw HTML.
Searching and navigating the analysis tree

Now we want to extract some useful information from the HTML content. The soup object contains
all the data in an internal structure that can be extracted programmatically. In our example, we're
scraping a web page with some quotes. So we want to create a program to store these quotes (and all
the related information about them).

The program code parses the website
#and then saves it in csv format

https://www.geeksforgeeks.org/data-structures/
http://www.values.com/inspirational-quotes

Volume 13| December 2022 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e | 13

import requests
from bs4 import BeautifulSoup
import csv

URL = " http://www.values.com/inspirational-quotes "
r = requests.get(URL)

soup = BeautifulSoup(r.content, 'html5lib')

quotes=[] # list of quote stories

table = soup.find('div', attrs = {'id':'all_quotes'})

for row in table.findAll('div',
attrs = {'class':'col-6 col-lg-3 text-center margin-30px-bottom cm-margin-30px-top'}):
quote = {}
quote['theme'] = row.h5.text
quote['url'] = row.a['href']
quote['img'] = row.img['src']
quote['lines'] = row.img['alt'].split(" #")[0]
quote['author'] = row.img['alt'].split(" #")[1]
quotes.append(quote)

filename = 'inspirational_quotes.csv'
with open(filename, 'w', newline='') as f:
w = csv.DictWriter(f,['theme','url','img','lines','author'])
w.writeheader()
for quote in quotes:
w.writerow(quote)

Notice that all quotes are inside a div container with id "all_quotes". So, we find the div element

(called table in the above code) using the find() method:

table = soup.find('div', attrs = {'id':'all_quotes'})

The first argument is the HTML tag you want to search for, and the second argument is a

dictionary type element to specify additional attributes associated with that tag. The find() method
returns the first matching element. You can try printing table.prettify() to understand what this piece
of code does.

Now, you can see that every quote class in the table element is inside a quote div container. So
we iterate through each div container whose class is a quote. Here we use the findAll() method, which
is similar to the find by arguments method, but it returns a list of all matching elements. Each quote is
now repeated using a variable called string. Here is an example of HTML content for a better
understanding :

http://www.values.com/inspirational-quotes

Volume 13| December 2022 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e | 14

We create a dictionary to store all the information about the quote. An embedded structure can be
accessed using the dot symbol:

for row in table.find_all_next('div', attrs = {'class': 'col-6 col- lg-3 text-center margin-30px-bottom cm-
margin-30px-top'}):
quote = {}
quote['theme'] = row.h5.text
quote['url'] = row.a['href']
quote['img'] = row.img['src']
quote['lines'] = row.img['alt'].split(" #")[0]
quote['author'] = row.img['alt'].split(" #")[1]
quotes.append(quote)

To access the text inside an HTML element, we use .text:

quote['theme'] = row.h5.text

We can add, delete, modify and access tag attributes. This is done by treating the tag as a
dictionary:

quote['url'] = row.a['href']

Finally, all the quotes are appended to the list called quotes.
Finally, we would like to save all our data in some CSV file.
We can add, delete, modify and access tag attributes. This is done by treating the tag as a dictionary:

filename = 'inspirational_quotes.csv'
with open(filename, 'w', newline='') as f:
w = csv.DictWriter(f,['theme','url','img','lines','author'])
w.writeheader()
for quote in quotes:
w.writerow(quote)

Here we will create a CSV file named inspirational_quotes.csv and save all the quotes in it for
later use.

Summary:
In this article, we looked at what web scraping
is, how it is used, and what the process involves.
The main interpretations include:

- Web scraping can be used to collect all
types of data: From images to videos,
text, digital data, and more.

- Web crawling has multiple purposes:
From social media trolling for contact
scraping and brand mentions to SEO
audits, the possibilities are endless.
Taking the time to plan what needs to be

parsed in advance will save you effort in the long
run when it comes to cleaning up your data.
Python is a popular tool for scraping web
applications: Python libraries such as
Beautifulsoup, scrapy, and pandas are common
tools for scraping web applications.

Before scraping web applications, you
should check the laws in different jurisdictions
and be careful not to violate the site's terms of
service.

References:

1. "Web scraping using Python". Ryan
Mitchell. Published by O'Reilly Media,
Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472

2. Izuchaem Python . Programmirovanie
igr, visualization dannyx, web prilogenia.
Eric Metz. — SPb.: Peter, 2017. — 496 p.:
il. — (Series "Biblioteka programmer").

3. Programming Python. Mark Lutz.
Published by O'Reilly Media, Inc., 1005
Gravenstein Highway North, Sebastopol,
CA 95472.

