
Volume 13| December 2022 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e |

1

Introduction

One of the well-researched areas in
computer science, notably in graph theory, is
the shortest-path problem. A path that meets
the least length requirements between a source
and a destination is the ideal shortest path. The
topic has many varied applications, leading to a
boom in research on shortest-path algorithms.
Network routing protocols, route planning,
traffic control, pathfinding in social networks,
computer games, and transportation systems
are just a few examples of these uses.

Selected graph types are taken into
account by shortest-path algorithms. An object
in mathematics made up of vertices and edges
are known as a generic graph. Vertices in a

spatial graph have positions that are not
perceived as places in space. On the other hand,
a spatial graph has vertices that are situated at
the ends of the edges. A planar graph is one
that is drawn in two dimensions with
continuous, non-straight, non-crossing edges.

Additionally, there are numerous
contexts in which a shortest path can be found.
As an illustration, the graph might be static,
with constant vertices and edges. A graph,
however, can be dynamic, meaning that new
vertices and edges may be added, changed, or
removed over time. Edges in the graph can be
directed or undirected. Either negative or non-
negative weights may be applied to the edges.
Real or integer numbers may be used as the

A Review of Shortest Path Problem
in Graph Theory

Khabibullo Nosirov Tashkent University of Information Technologies
Elnur Norov Tashkent University of Information Technologies

Email: elnurnorov@gmail.com
Shakhzod Tashmetov Tashkent University of Information Technologies

A
B

S
T

R
A

C
T

A graph's shortest-path algorithm identifies the route with the lowest cost
connecting two vertices. The literature covers a wide range of shortest-path algorithms
and is interdisciplinary. The survey of shortest-path algorithms in this paper is based on
a taxonomy that is presented in the paper. The varieties of the shortest-path issue
comprise one dimension of this taxonomy. Due to each solution's space and temporal
challenges, no general algorithm can solve all incarnations of the shortest-path problem.
The shortest-path algorithm's ability to operate on a static or dynamic graph, its ability
to provide accurate or approximative results, and whether or not it aims to attain time-
dependence rather than just goal-directedness are all significant aspects of the
taxonomy. According to the proposed taxonomy, shortest-path algorithms are examined
and categorized in this survey. The poll also outlines the issues and suggested fixes
related to each taxonomy category.

Keywords:
shortest path; algorithms; route; performance; review; graph;
node;

Volume 13| December 2022 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e |

2

values. Depending on the nature of the issue,
this.

Two main categories can be used to
classify the shortest-path methods. The first
category is single source shortest path (SSSP),
where the goal is to identify the shortest routes
between a single-source vertex and all other
vertices. The goal of the all-pairs shortest-path
(APSP) category, which is the second, is to
identify the shortest routes connecting every
pair of vertices in a graph. Strictly speaking,
there are two types of answers that can result
from the shortest-path calculation. The graph's
properties and the application's requirements
influence the algorithm that should be used. As
an illustration, the goal of approximation
shortest-path algorithms is to provide quick

results even when dealing with a sizable input
graph.

The goal of this survey is to present a
breakdown of these shortest-path algorithms
through an appropriate taxonomy given the
substantial body of literature on algorithms for
determining the shortest path. The
classification intends to assist researchers,
practitioners, and application developers in
comprehending the operation of each shortest-
path algorithm and in selecting the appropriate
type or category of shortest-path algorithms
for a given scenario or application area. The
proposed classification is shown in Figure 1,
where each branch defines a particular type of
shortest-path problem.

Volume 13| December 2022 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e |

3

Figure 1: Shortest-Path Calculation Scientific classification

Shortest-Path Calculation Scientific

classification
The suggested classification divides the

many shortest-path algorithms into numerous
high-level branches, just like in Figure 1.

The static branch in Figure 1 has a
collection of methods that work with graphs
that have fixed edge weights. The weights may
indicate cost, travel time, distance, or any other
grading factor. Some static algorithms
precompute the graph given that the weights
are fixed. The methods aim for a trade-off
between query speed and pre-computation and
storage needs. Two traditional shortest-path
algorithms are included in static algorithms:
Single-source shortest path (SSSP) and All-
pairs shortest path (APSP). The shortest path
between a given vertex and every other vertex
is calculated by the SSSP algorithms. Between
each pair of vertices in the graph, the shortest
paths are determined via the APSP algorithms.
A linear complexity problem is created from
the shortest-path problem using hierarchical
algorithms. In terms of calculation, this can
result in orders of magnitude better
performance. Algorithms that are goal-directed
maximize the distance or time to the desired
outcome. To reduce the time it takes to find the
shortest path, distance oracle algorithms add a
preprocessing step. Both precise and
approximative distance oracle techniques are
available. A set of algorithms that handle
update or query operations on a graph over
time is shown in Figure 1's dynamic branch.
The update operation has the ability to modify
edge weights as well as add or remove edges
from the graph. The distance between the
source and destination vertices is calculated
during the query operation. Both (APSP) and
(SSSP) algorithms are examples of dynamic
algorithms. Target graphs that vary over time
in a predictable way are the focus of time-
dependent algorithms. By treating the edges as
random variables, stochastic shortest-path
algorithms can capture the uncertainty around
the edges. The results of parametric shortest-

path algorithms are based on all possible
values for a given parameter. Every edge
between the source vertex and the destination
vertex is taken into account by replacement
path algorithms to determine a solution that
avoids the edge in question. Algorithms that
use replacement pathways reuse the
computations from each edge they avoid to
obtain high performance. Alternative path
algorithms, on the other hand, also determine
the shortest route between vertices while
avoiding a certain edge. Replacement pathways
do not have to identify a particular vertex or
edge to fall into either of the two categories.
Alternative shortest paths, on the other hand,
avoid the designated edge on the shortest path.
The approximate shortest path on weighted
planar divisions is discovered through the
weighted-regions issue.

Related works

In his study on the precise and
approximative shortest pathways, Zwick
adopts a theoretical stance. Single-source
shortest-path (SSSP), all pairs shortest-path
(APSP), spanners (a weighted graph variation),
and distance oracles are all covered by Zwick's
study. The survey provides examples of the
different approaches each category takes to
managing graphs with directed and undirected
edges as well as edge weights that are negative
and non-negative. With a focus on spanners
and distance oracles, Sen explores approximate
shortest-paths techniques. The construction of
spanners and distance oracles algorithms as
well as their practical applicability in a static
all-pairs shortest-paths scenario are covered in
Sen's survey. In his study on query processing
algorithms, Sommer examines trade-offs
between query time and index size. The
transportation network class of algorithms is
also introduced in Sommer's study, along with
algorithms for general graphs, planar graphs,
and complex graphs.

Numerous studies concentrate on
algorithms that are aimed at traffic

Volume 13| December 2022 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e |

4

applications, particularly route-planning
techniques. A network refers to a graph in this
connected body of work. Dijkstra's algorithm
modifications are categorized by Holzer et al.
based on the speedup techniques used. Their
study places a focus on methods that ensure
accuracy. It makes the case that the type of data
has a significant impact on how effective speed-
up techniques are. In addition, the layout,
memory, and acceptable preprocessing time all
affect the ideal speedup strategy. Fu et al. [60]
survey algorithms that focus on heuristic
shortest-path algorithms to quickly determine
the shortest path as opposed to optimal
shortest-path algorithms. The purpose of
heuristic algorithms is to reduce computing
time. The survey suggests the primary heuristic
algorithm differentiators as well as the
associated processing expenses. From a
theoretical perspective, Goldberg examines
how well point-to-point shortest path
algorithms perform over road networks. When
given a section of the graph, Goldberg analyzes
algorithms like Dijkstra and A and
demonstrates heuristic methods for calculating
the shortest path. A graph's good worst-case
and average-case boundaries are demonstrated
by the survey. It also discusses reach-based
pruning and exemplifies how to modify all-
pairs shortest-path algorithms to compute
reaches while keeping the same time constraint
as their original equivalents. Route planning
speedup methods are compared to certain
shortest-path issues, including their dynamic
and time-dependent variations, by Delling and
Wagner [37]. For instance, the authors contend
that time-dependent networks cannot be
served by the same shortcuts utilized in static
networks. In essence, they look into which
networks can use the current methods. Bast
[11] provides examples of speed-up methods
for quick routing between transportation
networks and road networks. According to
Bast's survey, both networks' algorithms are
unique and call for various speedup methods.
The survey also shows how the speed-up
method compares to Dijkstra's algorithm. The
survey also raises two unanswered questions:

(1) how to increase speed despite the absence
of a hierarchy in transportation networks; and
(2) how to compute local searches effectively,
such as in neighborhoods.

In their examination of algorithms that
study fully dynamic directed graphs,
Demetrescu and Italiano [39] place a focus on
dynamic shortest-paths and dynamic transitive
closures. The definitions of the algebraic and
combinatorial properties as well as the tools
for dynamic approaches are the main points of
the survey. The review addresses two key
issues, namely whether fully dynamic single-
source shortest path algorithms can be solved
quickly over general graphs and if dynamic
shortest pathways can achieve a space
complexity of O (n2). Techniques for dynamic
graph weights and dynamic graph topology are
reviewed by Nannicini and Liberti. They list
both established and cutting-edge methods for
locating trees and shortest paths in massive
graphs with changing weights. They focus on
two variations of the issue: time dependency
and what they refer to as weight cost updates.
The time-dependent methods in a dynamic
environment are the main topic of Dean's
survey [35]. It examines a single particular
instance, the First-In-First-Out (FIFO) network,
revealing structural characteristics that enable
the creation of effective polynomial-time
algorithms.

These features that set this survey apart
from all of its predecessors are presented here.
It begins by presenting a taxonomy that can
help in determining the best algorithm to
employ given a particular circumstance.
Second, the algorithms are presented in a
chronological order for each branch of the
taxonomy, illustrating how the ideas and
algorithms have changed through time.
Additionally, our survey is more thorough.

Issue Definition

Given a set of vertices V , a source vertex
s, a destination vertex d, where s, d ∈ V , and
a set of weighted edges E, over the set V , find
the shortest-path between s and d that has the
minimum weight. The input to the shortest-

Volume 13| December 2022 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e |

5

path algorithm is a graph G that consists of a
set of vertices V and edges E. The graph is
defined as G = (V, E). The edges can be
directed or undirected. The edges have explicit
weights, where a weight is defined as w(e),
where e ∈ E, or unweighted, where the implicit
weight is considered to be 1. When calculating
the algorithm complexity, we refer to the size
of the set of vertices V as n and the size of the
set of edges E as m.

Static Shortest-Path Algorithms

We go over the solutions to the single-
source shortest-path (SSSP) and all-pairs
shortest-path (APSP) problems in this part.

Definition: Given a Graph G = (V,E) and
Source s ∈ V , compute all distances δ(s, v),
where v ∈ V

The graph is unweighted in the simplest
case for SSSP. According to Cormen et al. [34],
the breadtfirst search can be easily used by
beginning a scan from a root vertex and looking
at the surrounding vertices. The path with the
fewest edges between the source and
destination vertices is found by probing the
non-visited vertices of each neighboring vertex.

The single source shortest-path (SSSP)
problem between a given vertex and all other
vertices in a graph is resolved by Dijkstra's
algorithm [42]. Utilizing directed graphs with
non-negative weights, Dijkstra's algorithm is
applied.

The method separates vertices into two
categories: solved and unsolved. The source
vertex is initially set as a solved vertex, and any
additional edges related to the source vertex
(through unsolved vertices) are then checked
for shortest paths to the destination. The
algorithm then adds the appropriate vertex to
the list of solved vertices after determining the
shortest edge. Up until all of the vertices are
solved, the algorithm iterates. The time
complexity of Dijkstra's algorithm is O (n2). The
algorithm has the benefit of not having to look
into every edge, which is one advantage. This is
especially helpful if some of the edges' weights
are pricey. The approach only works with non-

negative weighted edges, which is a drawback.
Additionally, it only applies to static graphs.

Dijkstra's algorithm is regarded as a
greedy algorithm since it uses a brute-force
search to identify the best shortest path. The
successive approximation method used by
Dijkstra's algorithm is based on Bellman Ford's
optimality premise [17]. This suggests that the
reaching approach, a technique used by
Dijkstra's algorithm to solve the dynamic
programming equation, can be used [41].

By focusing on the smaller issues,
dynamic programming has the advantage of
avoiding the brute-force search method. While
avoiding explicitly looking at every potential
answer, dynamic programming algorithms
probe an infinitely huge set of solutions. The
optimal solution is found using both the greedy
and the dynamic programming variants of
Dijkstra's algorithm. The distinction is that
both may take different routes to the best
answers.

In contrast to Dijkstra's method,
Bellman, Ford, and Moore [18,53] create an
SSSP algorithm that can handle negative
weights. It functions similarly to Dijkstra's
algorithm in that it tries to compute the
shortest path but selects all neighbor edges
rather than just those with the smallest
distance. It then continues in n 1 cycles to
ensure that all modifications have been
distributed throughout the graph. Dijkstra's
algorithm can solve problems more quickly
than Bellman-algorithm, Ford's however it
can't recognize negative cycles or work with
negative weights.

All-Pairs Shortest-Path (APSP)

Definition: Given a graph G = (V,E),
compute all distances between a source vertex
s and a destination v, where s and v are
elements of the set V .

A graph with non-negative edge weights
is the most typical use of APSP. For each vertex
in the graph in this situation, Dijkstra's
algorithm can be computed separately.
O(mn+n2logn) will be the time complexity.

Volume 13| December 2022 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e |

6

Many algorithms handling real edge
weights have been put forth for the all-pairs
shortest-path problem. Finding all pairs of
shortest paths (APSP) in a weighted network
with positive and negative weighted edges is
the goal of the Floyd-Warshall algorithm [52].
Although their system can recognize negative-
weight cycles, it cannot break them. Floyd-
Warshall algorithm has an O(n3) complexity,
where n is the number of vertices. The diagonal
path matrix is probed to find negative-weight
cycles. Because the Floyd-Warshall technique
does not save the intermediate vertices as it
calculates, it is unable to identify the precise
shortest pathways between vertex pairs.
However, one can save this data within the
algorithmic stages via a straightforward
update. The algorithm's space complexity is O
(n3).

However, by employing a single
displacement array, this space complexity can
increase to O(n2). The algorithm's ability to
manage negative-weight edges and find
negative-weight cycles is one of its strongest
points. The biggest disadvantage is that
Dijkstra's algorithm will have an O(mn +
n2logn) time complexity when applied to all
vertices to transform it from SSSP to APSP. If
and only if m < n2, this timing complexity is less
difficult than O(n3) (i.e., having a sparse graph).

O(n2logn) [63] is the best non-negative
edge weight complexity. The algorithm starts
by weighting all adjacency lists in ascending
order. After that, it iteratively conducts an SSSP
calculation n times. It picks and labels the edge
with the lowest potential in the first phase
using the idea of potential over the vertices'
edges. Potential is a probability distribution on
fully directed graphs with arbitrary edge
lengths and no negative cycles. It is derived
from the potential model. The algorithm
comprises two primary stages, each having a
different invariant and executing at a speed of
O(n2logn).

Goal-Directed Shortest-Paths

An annotation is a piece of extra
information that is added to a vertex or edge of

a graph as part of a goal-directed shortest-path
search technique. Using this data, the algorithm
can choose which area of the graph to remove
from the search space.

A straightforward goal-directed
algorithm called A is proposed by Hart et al.
The technique suggests using a heuristic
method to identify the shortest path. In
contrast to Dijkstra's algorithm, A is an
informed algorithm that looks for paths that
will take it to its intended destination. The best
best-first-search greedy algorithm is A. But A
differs from other algorithms in that it keeps in
mind the distance that it went. If a valid
heuristic is employed, A always finds the
shortest route. The algorithm's main advantage
is that it searches fewer vertices than Dijkstra,
which should make it faster. A will not find the
shortest path if a good heuristic approach is not
used, which is a drawback.

A related answer to the issue is provided
by Gutman, whose work is founded on the idea
of reach. The Euclidean coordinates of each
vertex and a reach value are both stored in
Gutman's method. In contrast to the work by
Goldberg and Werneck, Gutman's approach
beats their suggested strategy given one
landmark while it performs worse given
sixteen landmarks. This is due to the fact that it
can be integrated with the A algorithm. The
disadvantages of Gutman's method include its
reliance on domain-specific presumptions,
increased preprocessing complexity, and
inapplicability in dynamic environments.

A strategy called edge labels depends on
computing the data for an edge (e) and its
vertices (M) in advance. All of the shortest-path
vertices that begin with the edge e are
represented by the superset M(e). The graph is
first divided into a set of identically sized
sections and a predetermined set of boundary
vertices.

An SSSP computation is performed on
the regions for all the border vertices in order
to calculate the edge flags. Additional edge-
label modifications are shown in a number of
works, including those by Kohler et al. [62],
Schulz et al, and Lauther.

Volume 13| December 2022 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e |

7

The arc-flag technique is an algorithm
proposed by Mohring et al. for sparse directed
graphs with non-negative edge weights. By
splitting the graph into areas and identifying
whether an arc in a particular zone is on the
shortest-path, the arc-flag approach
preprocesses graph data to produce
information that speeds shortest-path queries.
The arc-flag approach outperforms the typical
Dijkstra's algorithm over a large graph by a
factor of 500, given an appropriate partitioning
scheme and a bi-directed search. By conducting
a single search for each location, Schilling et al.
offer an improvement. On a subnetwork with
one million vertices, their method results in a
speedup of more than 1,470.

Hierarchical Shortest-Path

In the pre-processing stage, multi-
layered vertex hierarchies are created using
hierarchical shortest-path methods. In regions
like road networks, where it displays
hierarchical characteristics such arranging
significant streets, freeways, and urban streets,
a hierarchical structure is prevalent.

In general, techniques utilizing
contraction hierarchies offer little spatial
complexity. Reach-based techniques, highway
hierarchies, and vertex routing are just a few of
the many variations of contraction hierarchies.

Conversely, Transit-vertex Routing and
Hub Labels offer quick query times.

The parts that follow talk about
different hierarchical algorithms.

Multi-Level Graphs

The shortest paths in a multi-level
overlay graph do not employ vertex from the
higher levels if a set of vertices are located at a
particular level. This strategy also depends on
choosing the right vertices to serve as markers
on higher levels. A multi-level graph-based
decomposition method with space reduction as
its goal is proposed by Schulz et al. This
approach precomputed the shortest-paths and
substitutes a weight equal to the length of the
shortest-path for the weights of single edges.
As a result, the subgraph is scaled down in

comparison to the main graph. The distances in
a subgraph between a group of vertices are
equal to the distances in the original graph's
shortest-path graph between the same group of
vertices.

Algorithms for Dynamic Shortest Paths

The efficient live processing of updates
and query operations is the primary need for
dynamic shortest-path algorithms. The update
procedure involves adding or removing edges
from the graph. The distance between vertices
is computed during the query operation.

The only algorithms that can handle
insertions and deletions are those that are fully
dynamic. Insert operations can be handled by
incremental algorithms, while delete
operations cannot. Insert operations cannot be
handled by incremental algorithms, whereas
delete operations can. This suggests that both
incremental and decremental algorithms have
some degree of dynamic behavior.

Time-Dependent Shortest-Path Algorithms

Processed by a time-dependent
shortest-path method are graphs with edges
connected by an edge-delay function. How long
it takes for a signal to go from one vertex to
another is shown by the edge-delay function.
The query operation searches the graph for the
path with the shortest distance between the
source and the destination vertex. The result
that was returned is the best departure time
that was located within the specified time
frame.

Algorithms for the Stochastic Shortest Path

A stochastic shortest-path makes an
effort to represent the uncertainty surrounding
the edges as random variables. The goal then
shifts to finding the shortest paths based on the
lowest anticipated expenses. Adaptive and non-
adaptive algorithms are the two prominent
study areas in this issue. Based on the graph's
current state at a certain time instance, the
adaptive algorithms estimate what the best
next hop would be. The non-adaptive

Volume 13| December 2022 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e |

8

algorithms prioritize reducing the path's
length.
Adaptive Algorithms

To find the apriori least-expected-time
pathways from all source vertices to a single
destination vertex, Miller-Hooks and
Mahmassani offer an approach. When the
graph is busy, a computation is made for each
departure time. Additionally, they suggest a
lower-bound for these a priori least-expected-
time pathways.

According to Nikolova et alalgorithm,
the probability can be maximized without
going over a predetermined limit for the length
of the shortest pathways. Edge weights for the
probabilistic model they define are taken from
a predetermined probability distribution. The
path that has the highest likelihood of
indicating one that fails to cross a particular
threshold is the best option.

Non-Adaptive Algorithms

The idea put out by Loui is to combine
the length of the path with a utility function
that is monotone and non-decreasing. The
utility function can be divided into its edge
lengths when it behaves linearly or
exponentially. Thus, pathways that maximize
the utility function can be used to identify the
utility function using conventional shortest-
paths procedures.

An algorithm for the best route planning
under uncertainty is put forth by Nikolova et al.
They determine the target as a function of the
source's departure time and the path's length.
Due to the penalizing behavior they display for
early and late arrivals, they suggest that the
path and start time can be simultaneously

Conclusion

Which method is best, have to think
about which one is appropriate for the kind of
graph you're working with and the shortest
path problem you're trying to solve. In many
applications, including communications, graph
theory, and electronics difficulties, the shortest
path algorithm is a significant problem. The
shortest path Algorithm is a major issue in

many Applications like communications, in
graph theory and electronics problems. Various
algorithm for resolving SPA i.e. Dijkstra’s,
Bellman Ford, Johnson’s, has been discussed
with there drawbacks and applications

In this article, we suggest a classification
system for the shortest-path issue in terms of
science. We highlight the cutting-edge research
for each branch of the classification and
illustrate the distinguishing aspects. The
classification gives shortest-path problem
researchers a roadmap for where a necessary
problem definition fits within the existing
relevant work

References
[1] I. Abraham and D. Delling. A hub-based
labeling algorithm for shortest paths in road
networks. Experimental Algorithms, 2011.
[2] I. Abraham, D. Delling, A. Goldberg, and R.
Werneck. Hierarchical hub labelings for
shortest paths. AlgorithmsESA 2012, 2012.
[3] I. Abraham, A. Fiat, A. V. Goldberg, and R. F.
Werneck. Highway dimension, shortest paths,
and provably efficient algorithms. Proceedings
of the Twenty-First Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 782–
793, 2010.
[4] R. Agarwal, P. B. Godfrey, and S. Har-Peled.
Approximate distance queries and compact
routing in sparse graphs. IEEE INFOCOM, pages
1754–1762, 2011.
[5] A. V. Aho and J. E. Hopcroft. The Design and
Analysis of Computer Algorithms. Addison-
Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1st edition, 1974.
[6] W. Aiello, F. Chung, and L. Lu. A random
graph model for massive graphs. STOC, 2000.
[7] D. Aingworth, C. Chekuri, and R. Motwani.
Fast Estimation of Diameter and Shortest Paths
(without matrix multiplication). SODA, pages
547–553, 1996.
[8] J. Arz, D. Luxen, and P. Sanders. Transit
Node Routing Reconsidered. SEA, 2013.
[9] M. Babenko, A. Goldberg, A. Gupta, and V.
Nagarajan. Algorithms for hub label
optimization. Automata, Languages, and
Programming, 2013.

Volume 13| December 2022 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e |

9

[10] M. J. Bannister and D. Eppstein.
Randomized Speedup of the Bellman-Ford
Algorithm. ANALCO, 2011.
[11] H. Bast. Car or public transport two
worlds. Efficient Algorithms, pages 355–367,
2009.
[12] H. Bast, S. Funke, D. Matijevic, P. Sanders,
and D. Schultes. In Transit to Constant Time
Shortest-Path Queries in Road Networks.
ALENEX, 2007.
[13] S. Baswana and S. Sen. A simple and linear
time randomized algorithm for computing
sparse spanners in weighted graphs. Random
Structures and Algorithms, pages 532–563,
2007.
[14] G. Batz, R. Geisberger, S. Neubauer, and P.
Sanders. Time-dependent contraction
hierarchies and approximation. Experimental
Algorithms, pages 166–177, 2010.
[15] R. Bauer and D. Delling. SHARC: Fast and
robust unidirectional routing. Journal of
Experimental Algorithmics (JEA), 2009.
[16] R. Bauer, D. Delling, P. Sanders, D.
Schieferdecker, D. Schultes, and D. Wagner.
Combining hierarchical and goal-directed
speed-up techniques for dijkstra’s algorithm.
Journal of Experimental Algorithmics, pages
303–318, 2010.
[17] R. Bellman. Dynamic Programming.
Princeton University Press, 1957.
[18] R. Bellman. On a routing problem.
Quarterly of Applied Mathematics, 1958.
[19] A. Bernstein. Fully Dynamic (2 + epsilon)
Approximate All-Pairs Shortest Paths with Fast
Query and Close to Linear Update Time. 2009
50th Annual IEEE Symposium on Foundations
of Computer Science, pages 693–702, 2009.
[20] A. Bernstein. A Nearly Optimal Algorithm
for Approximating Replacement Paths and k
Shortest Simple Paths in General Graphs.
Proceedings of the Twenty-First Annual ACM-
Siam Symposium on Discrete Algorithms, pages
742–755, 2010.
 [21] A. Bernstein. Maintaining shortest paths
under deletions in weighted directed graphs.
STOC, page 725, 2013.
[22] A. Bernstein and L. Roditty. Improved
dynamic algorithms for maintaining

approximate shortest paths under deletions.
ACM-SIAM Symposium on Discrete Algorithms,
pages 1355–1365, 2011.
[23] P. v. E. Boas. Preserving order in a forest in
less than logarithmic time. pages 75–84, 1975.
[24] P. v. E. Boas, R. Kaas, and E. Zijlstra. Design
and implementation of an efficient priority
queue. Mathematical Systems Theory, pages
99–127, 1976.
[25] S. Cabello. Many distances in planar
graphs. Algorithmica, pages 361–381, 2012.
[26] K. Cechlrov and P. Szab. On the monge
property of matrices. Discrete Mathematics,
81(2):123– 128, 1990.
[27] T. M. Chan. All-pairs shortest paths for
unweighted undirected graphs in o(mn) time.
Proceedings of the seventeenth annual ACM-
SIAM symposium on Discrete algorithm, pages
514–523, 2006.
[28] T. M. Chan. More algorithms for all-pairs
shortest paths in weighted graphs. Proceedings
of the thirty-ninth annual ACM symposium on
Theory of computing, pages 590–598, 2007.
[29] L. Chang, J. X. Yu, L. Qin, H. Cheng, and M.
Qiao. The exact distance to destination in
undirected world. The VLDB Journal,
21(6):869–888, 2012.
[30] W. Chen, C. Sommer, S.-H. Teng, and Y.
Wang. A compact routing scheme and
approximate distance oracle for power-law
graphs. ACM Transactions on Algorithms, pages
1–26, 2012.
[31] E. Cohen, E. Halperin, H. Kaplan, and U.
Zwick. Reachability and Distance Queries via 2-
Hop Labels. SIAM Journal on Computing,
32:1338–1355, 2003.
[32] E. Cohen and U. Zwick. All-Pairs Small-
Stretch Paths. Journal of Algorithms, pages
335–353, 2001.
[33] D. Coppersmith and S. Winograd. Matrix
multiplication via arithmetic progressions.
Journal of Symbolic Computation, pages 251 –
280, 1990.
[34] T. H. Cormen, C. Stein, R. L. Rivest, and C. E.
Leiserson. Introduction to Algorithms.
McGraw-Hill Higher Education, 2nd edition,
2001.

Volume 13| December 2022 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e |

10

[35] B. Dean. Shortest paths in FIFO time-
dependent networks: Theory and algorithms.
Rapport technique, 2004.
[36] D. Delling, T. Pajor, and R. Werneck.
Round-based public transit routing.
ALENEX’12, 2012.
[37] D. Delling and D. Wagner. Time-dependent
route planning. Robust and Online Large-Scale
Optimization, 2:1–18, 2009.
[38] C. Demetrescu and G. Italiano. A new
approach to dynamic all pairs shortest paths.
Journal of the ACM (JACM), pages 1–29, 2004.
[39] C. Demetrescu and G. F. Italiano. Dynamic
shortest paths and transitive closure:
Algorithmic techniques and data structures.
Journal of Discrete Algorithms, pages 353–383,
2006.
[40] U. Demiryurek, F. Banaei-kashani, and C.
Shahabi. Online Computation of Fastest Path in
Time-Dependent. SSTD, pages 92–111, 2011.
[41] E. V. Denardo. Dynamic Programming:
Models and Applications. Dover Publications,
2003.
[42] E. W. Dijkstra. A note on two problems in
connexion with graphs. Numerische
Mathematik, pages 269–271, 1959.
[43] B. Ding, J. X. Yu, and L. Qin. Finding time-
dependent shortest paths over large graphs.
Proceedings of the 11th international
conference on Extending database technology
Advances in database technology EDBT 08,
page 205, 2008.
[44] H. Djidjev. Efficient algorithms for shortest
path queries in planar digraphs. Graph-
Theoretic Concepts in Computer Science, pages
151–165, 1996.
[45] W. Dobosiewicz. A more efficient
algorithm for min-plus multiplication. Internat.
J. Comput. Math, 1990.
[46] D. Dor, S. Halperin, and U. Zwick. All-pairs
almost shortest paths. SIAM Journal on
Computing, 2000.
[47] J. Driscoll and H. Gabow. Relaxed heaps:
An alternative to Fibonacci heaps with
applications to parallel computation.
Communications of the ACM, pages 1343–1354,
1988.

[48] M. Elkin and D. Peleg. (1+epsilon,beta)-
spanner constructions for general graphs. SIAM
Journal on Computing, pages 608–631, 2004.
[49] Y. Emek, D. Peleg, and L. Roditty. A near-
linear-time algorithm for computing
replacement paths in planar directed graphs.
ACM Transactions on Algorithms, 6:1–13, 2010.
[50] J. Erickson. Maximum flows and
parametric shortest paths in planar graphs.
SIAM, 2010.
[51] J. Fakcharoenphol and S. Rao. Planar
graphs, negative weight edges, shortest paths,
and near linear time. Journal of Computer and
System Sciences, pages 868–889, 2006.
[52] R. Floyd. Algorithm 97: Shortest Path.
Communications of the ACM, pages 344–348,
1962.
[53] L. R. Ford. Network flow theory. Report P-
923, The Rand Corporation, 1956.
[54] L. Foschini, J. Hershberger, and S. Suri. On
the complexity of time-dependent shortest
paths. Algorithmica, 2014.
[55] M. Fredman. New bounds on the
complexity of the shortest path problem. SIAM,
pages 83–89, 1976.
[56] M. Fredman and R. Tarjan. Fibonacci heaps
and their uses in improved network
optimization algorithms. Journal of the ACM
(JACM), pages 338–346, 1987.
[57] M. Fredman and D. Willard. Trans-
dichotomous algorithms for minimum
spanning trees and shortest paths. Proceedings
[1990] 31st Annual Symposium on
Foundations of Computer Science, pages 719–
725, 1990.
[58] M. Fredman and D. Willard. Surpassing the
information theoretic bound with fusion trees.
Journal of computer and system sciences, pages
424–436, 1993.
[59] M. L. Fredman and D. E. Willard.
BLASTING through the information theoretic
barrier with FUSION TREES. Proceedings of the
twenty-second annual ACM symposium on
Theory of computing - STOC ’90, pages 1–7,
1990.
[60] L. Fu, D. Sun, and L. Rilett. Heuristic
shortest path algorithms for transportation

Volume 13| December 2022 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e |

11

applications: State of the art. Computers &
Operations Research, pages 3324–3343, 2006.
[61] C. Gavoille, D. Peleg, S. Pґerennes, and R.
Raz. Distance labeling in graphs. J. Algorithms,
pages 85–112, 2004.
[62] E. KoЁhler, R. MoЁhring, and H. Schilling.
Acceleration of shortest path and constrained
shortest path computation. Experimental and
Efficient Algorithms, pages 1–17, 2005.
[63] A. Moffat and T. Takaoka. An all pairs
shortest path algorithm with expected running
time o(n2 log n). SIAM J Computing, page
10231031, 1987.

