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Introduction 

One of the well-researched areas in 
computer science, notably in graph theory, is 
the shortest-path problem. A path that meets 
the least length requirements between a source 
and a destination is the ideal shortest path. The 
topic has many varied applications, leading to a 
boom in research on shortest-path algorithms. 
Network routing protocols, route planning, 
traffic control, pathfinding in social networks, 
computer games, and transportation systems 
are just a few examples of these uses. 

Selected graph types are taken into 
account by shortest-path algorithms. An object 
in mathematics made up of vertices and edges 
are known as a generic graph. Vertices in a 

spatial graph have positions that are not 
perceived as places in space. On the other hand, 
a spatial graph has vertices that are situated at 
the ends of the edges. A planar graph is one 
that is drawn in two dimensions with 
continuous, non-straight, non-crossing edges. 

Additionally, there are numerous 
contexts in which a shortest path can be found. 
As an illustration, the graph might be static, 
with constant vertices and edges. A graph, 
however, can be dynamic, meaning that new 
vertices and edges may be added, changed, or 
removed over time. Edges in the graph can be 
directed or undirected. Either negative or non-
negative weights may be applied to the edges. 
Real or integer numbers may be used as the 
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values. Depending on the nature of the issue, 
this. 

Two main categories can be used to 
classify the shortest-path methods. The first 
category is single source shortest path (SSSP), 
where the goal is to identify the shortest routes 
between a single-source vertex and all other 
vertices. The goal of the all-pairs shortest-path 
(APSP) category, which is the second, is to 
identify the shortest routes connecting every 
pair of vertices in a graph. Strictly speaking, 
there are two types of answers that can result 
from the shortest-path calculation. The graph's 
properties and the application's requirements 
influence the algorithm that should be used. As 
an illustration, the goal of approximation 
shortest-path algorithms is to provide quick 

results even when dealing with a sizable input 
graph. 

The goal of this survey is to present a 
breakdown of these shortest-path algorithms 
through an appropriate taxonomy given the 
substantial body of literature on algorithms for 
determining the shortest path. The 
classification intends to assist researchers, 
practitioners, and application developers in 
comprehending the operation of each shortest-
path algorithm and in selecting the appropriate 
type or category of shortest-path algorithms 
for a given scenario or application area. The 
proposed classification is shown in Figure 1, 
where each branch defines a particular type of 
shortest-path problem. 
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Figure 1: Shortest-Path Calculation Scientific classification 
 
Shortest-Path Calculation Scientific 

classification 
The suggested classification divides the 

many shortest-path algorithms into numerous 
high-level branches, just like in Figure 1.  

The static branch in Figure 1 has a 
collection of methods that work with graphs 
that have fixed edge weights. The weights may 
indicate cost, travel time, distance, or any other 
grading factor. Some static algorithms 
precompute the graph given that the weights 
are fixed. The methods aim for a trade-off 
between query speed and pre-computation and 
storage needs. Two traditional shortest-path 
algorithms are included in static algorithms: 
Single-source shortest path (SSSP) and All-
pairs shortest path (APSP). The shortest path 
between a given vertex and every other vertex 
is calculated by the SSSP algorithms. Between 
each pair of vertices in the graph, the shortest 
paths are determined via the APSP algorithms. 
A linear complexity problem is created from 
the shortest-path problem using hierarchical 
algorithms. In terms of calculation, this can 
result in orders of magnitude better 
performance. Algorithms that are goal-directed 
maximize the distance or time to the desired 
outcome. To reduce the time it takes to find the 
shortest path, distance oracle algorithms add a 
preprocessing step. Both precise and 
approximative distance oracle techniques are 
available. A set of algorithms that handle 
update or query operations on a graph over 
time is shown in Figure 1's dynamic branch. 
The update operation has the ability to modify 
edge weights as well as add or remove edges 
from the graph. The distance between the 
source and destination vertices is calculated 
during the query operation. Both (APSP) and 
(SSSP) algorithms are examples of dynamic 
algorithms. Target graphs that vary over time 
in a predictable way are the focus of time-
dependent algorithms. By treating the edges as 
random variables, stochastic shortest-path 
algorithms can capture the uncertainty around 
the edges. The results of parametric shortest-

path algorithms are based on all possible 
values for a given parameter. Every edge 
between the source vertex and the destination 
vertex is taken into account by replacement 
path algorithms to determine a solution that 
avoids the edge in question. Algorithms that 
use replacement pathways reuse the 
computations from each edge they avoid to 
obtain high performance. Alternative path 
algorithms, on the other hand, also determine 
the shortest route between vertices while 
avoiding a certain edge. Replacement pathways 
do not have to identify a particular vertex or 
edge to fall into either of the two categories. 
Alternative shortest paths, on the other hand, 
avoid the designated edge on the shortest path. 
The approximate shortest path on weighted 
planar divisions is discovered through the 
weighted-regions issue.  

 
Related works 

In his study on the precise and 
approximative shortest pathways, Zwick 
adopts a theoretical stance. Single-source 
shortest-path (SSSP), all pairs shortest-path 
(APSP), spanners (a weighted graph variation), 
and distance oracles are all covered by Zwick's 
study. The survey provides examples of the 
different approaches each category takes to 
managing graphs with directed and undirected 
edges as well as edge weights that are negative 
and non-negative. With a focus on spanners 
and distance oracles, Sen explores approximate 
shortest-paths techniques. The construction of 
spanners and distance oracles algorithms as 
well as their practical applicability in a static 
all-pairs shortest-paths scenario are covered in 
Sen's survey. In his study on query processing 
algorithms, Sommer examines trade-offs 
between query time and index size. The 
transportation network class of algorithms is 
also introduced in Sommer's study, along with 
algorithms for general graphs, planar graphs, 
and complex graphs.  

Numerous studies concentrate on 
algorithms that are aimed at traffic 
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applications, particularly route-planning 
techniques. A network refers to a graph in this 
connected body of work. Dijkstra's algorithm 
modifications are categorized by Holzer et al. 
based on the speedup techniques used. Their 
study places a focus on methods that ensure 
accuracy. It makes the case that the type of data 
has a significant impact on how effective speed-
up techniques are. In addition, the layout, 
memory, and acceptable preprocessing time all 
affect the ideal speedup strategy. Fu et al. [60] 
survey algorithms that focus on heuristic 
shortest-path algorithms to quickly determine 
the shortest path as opposed to optimal 
shortest-path algorithms. The purpose of 
heuristic algorithms is to reduce computing 
time. The survey suggests the primary heuristic 
algorithm differentiators as well as the 
associated processing expenses. From a 
theoretical perspective, Goldberg examines 
how well point-to-point shortest path 
algorithms perform over road networks. When 
given a section of the graph, Goldberg analyzes 
algorithms like Dijkstra and A and 
demonstrates heuristic methods for calculating 
the shortest path. A graph's good worst-case 
and average-case boundaries are demonstrated 
by the survey. It also discusses reach-based 
pruning and exemplifies how to modify all-
pairs shortest-path algorithms to compute 
reaches while keeping the same time constraint 
as their original equivalents. Route planning 
speedup methods are compared to certain 
shortest-path issues, including their dynamic 
and time-dependent variations, by Delling and 
Wagner [37]. For instance, the authors contend 
that time-dependent networks cannot be 
served by the same shortcuts utilized in static 
networks. In essence, they look into which 
networks can use the current methods. Bast 
[11] provides examples of speed-up methods 
for quick routing between transportation 
networks and road networks. According to 
Bast's survey, both networks' algorithms are 
unique and call for various speedup methods. 
The survey also shows how the speed-up 
method compares to Dijkstra's algorithm. The 
survey also raises two unanswered questions: 

(1) how to increase speed despite the absence 
of a hierarchy in transportation networks; and 
(2) how to compute local searches effectively, 
such as in neighborhoods.  

In their examination of algorithms that 
study fully dynamic directed graphs, 
Demetrescu and Italiano [39] place a focus on 
dynamic shortest-paths and dynamic transitive 
closures. The definitions of the algebraic and 
combinatorial properties as well as the tools 
for dynamic approaches are the main points of 
the survey. The review addresses two key 
issues, namely whether fully dynamic single-
source shortest path algorithms can be solved 
quickly over general graphs and if dynamic 
shortest pathways can achieve a space 
complexity of O (n2). Techniques for dynamic 
graph weights and dynamic graph topology are 
reviewed by Nannicini and Liberti. They list 
both established and cutting-edge methods for 
locating trees and shortest paths in massive 
graphs with changing weights. They focus on 
two variations of the issue: time dependency 
and what they refer to as weight cost updates. 
The time-dependent methods in a dynamic 
environment are the main topic of Dean's 
survey [35]. It examines a single particular 
instance, the First-In-First-Out (FIFO) network, 
revealing structural characteristics that enable 
the creation of effective polynomial-time 
algorithms. 

These features that set this survey apart 
from all of its predecessors are presented here. 
It begins by presenting a taxonomy that can 
help in determining the best algorithm to 
employ given a particular circumstance. 
Second, the algorithms are presented in a 
chronological order for each branch of the 
taxonomy, illustrating how the ideas and 
algorithms have changed through time. 
Additionally, our survey is more thorough.  

 
Issue Definition 

Given a set of vertices V , a source vertex 
s, a destination vertex d, where s,       d ∈ V , and 
a set of weighted edges E, over the set V , find 
the shortest-path between s and d that has the 
minimum weight. The input to the shortest-
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path algorithm is a graph G that consists of a 
set of vertices V and edges E. The graph is 
defined as         G = (V, E). The edges can be 
directed or undirected. The edges have explicit 
weights, where a weight is defined as w(e), 
where e ∈ E, or unweighted, where the implicit 
weight is considered to be 1. When calculating 
the algorithm complexity, we refer to the size 
of the set of vertices V as n and the size of the 
set of edges E as m. 

 
Static Shortest-Path Algorithms 

We go over the solutions to the single-
source shortest-path (SSSP) and all-pairs 
shortest-path (APSP) problems in this part. 

Definition: Given a Graph G = (V,E) and 
Source s ∈ V , compute all distances δ(s, v), 
where v ∈ V  

The graph is unweighted in the simplest 
case for SSSP. According to Cormen et al. [34], 
the breadtfirst search can be easily used by 
beginning a scan from a root vertex and looking 
at the surrounding vertices. The path with the 
fewest edges between the source and 
destination vertices is found by probing the 
non-visited vertices of each neighboring vertex. 

The single source shortest-path (SSSP) 
problem between a given vertex and all other 
vertices in a graph is resolved by Dijkstra's 
algorithm [42]. Utilizing directed graphs with 
non-negative weights, Dijkstra's algorithm is 
applied. 

The method separates vertices into two 
categories: solved and unsolved. The source 
vertex is initially set as a solved vertex, and any 
additional edges related to the source vertex 
(through unsolved vertices) are then checked 
for shortest paths to the destination. The 
algorithm then adds the appropriate vertex to 
the list of solved vertices after determining the 
shortest edge. Up until all of the vertices are 
solved, the algorithm iterates. The time 
complexity of Dijkstra's algorithm is O (n2). The 
algorithm has the benefit of not having to look 
into every edge, which is one advantage. This is 
especially helpful if some of the edges' weights 
are pricey. The approach only works with non-

negative weighted edges, which is a drawback. 
Additionally, it only applies to static graphs.  

Dijkstra's algorithm is regarded as a 
greedy algorithm since it uses a brute-force 
search to identify the best shortest path. The 
successive approximation method used by 
Dijkstra's algorithm is based on Bellman Ford's 
optimality premise [17]. This suggests that the 
reaching approach, a technique used by 
Dijkstra's algorithm to solve the dynamic 
programming equation, can be used [41]. 

By focusing on the smaller issues, 
dynamic programming has the advantage of 
avoiding the brute-force search method. While 
avoiding explicitly looking at every potential 
answer, dynamic programming algorithms 
probe an infinitely huge set of solutions. The 
optimal solution is found using both the greedy 
and the dynamic programming variants of 
Dijkstra's algorithm. The distinction is that 
both may take different routes to the best 
answers. 

In contrast to Dijkstra's method, 
Bellman, Ford, and Moore [18,53] create an 
SSSP algorithm that can handle negative 
weights. It functions similarly to Dijkstra's 
algorithm in that it tries to compute the 
shortest path but selects all neighbor edges 
rather than just those with the smallest 
distance. It then continues in n 1 cycles to 
ensure that all modifications have been 
distributed throughout the graph. Dijkstra's 
algorithm can solve problems more quickly 
than Bellman-algorithm, Ford's however it 
can't recognize negative cycles or work with 
negative weights.  

 
All-Pairs Shortest-Path (APSP) 

Definition: Given a graph G = (V,E), 
compute all distances between a source vertex 
s and a destination v, where s and v are 
elements of the set V . 

A graph with non-negative edge weights 
is the most typical use of APSP. For each vertex 
in the graph in this situation, Dijkstra's 
algorithm can be computed separately. 
O(mn+n2logn) will be the time complexity. 
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Many algorithms handling real edge 
weights have been put forth for the all-pairs 
shortest-path problem. Finding all pairs of 
shortest paths (APSP) in a weighted network 
with positive and negative weighted edges is 
the goal of the Floyd-Warshall algorithm [52]. 
Although their system can recognize negative-
weight cycles, it cannot break them. Floyd-
Warshall algorithm has an O(n3) complexity, 
where n is the number of vertices. The diagonal 
path matrix is probed to find negative-weight 
cycles. Because the Floyd-Warshall technique 
does not save the intermediate vertices as it 
calculates, it is unable to identify the precise 
shortest pathways between vertex pairs. 
However, one can save this data within the 
algorithmic stages via a straightforward 
update. The algorithm's space complexity is O 
(n3). 

However, by employing a single 
displacement array, this space complexity can 
increase to O(n2). The algorithm's ability to 
manage negative-weight edges and find 
negative-weight cycles is one of its strongest 
points. The biggest disadvantage is that 
Dijkstra's algorithm will have an O(mn + 
n2logn) time complexity when applied to all 
vertices to transform it from SSSP to APSP. If 
and only if m < n2, this timing complexity is less 
difficult than O(n3) (i.e., having a sparse graph). 

O(n2logn) [63] is the best non-negative 
edge weight complexity. The algorithm starts 
by weighting all adjacency lists in ascending 
order. After that, it iteratively conducts an SSSP 
calculation n times. It picks and labels the edge 
with the lowest potential in the first phase 
using the idea of potential over the vertices' 
edges. Potential is a probability distribution on 
fully directed graphs with arbitrary edge 
lengths and no negative cycles. It is derived 
from the potential model. The algorithm 
comprises two primary stages, each having a 
different invariant and executing at a speed of 
O(n2logn). 

 
Goal-Directed Shortest-Paths 

An annotation is a piece of extra 
information that is added to a vertex or edge of 

a graph as part of a goal-directed shortest-path 
search technique. Using this data, the algorithm 
can choose which area of the graph to remove 
from the search space. 

A straightforward goal-directed 
algorithm called A is proposed by Hart et al. 
The technique suggests using a heuristic 
method to identify the shortest path. In 
contrast to Dijkstra's algorithm, A is an 
informed algorithm that looks for paths that 
will take it to its intended destination. The best 
best-first-search greedy algorithm is A. But A 
differs from other algorithms in that it keeps in 
mind the distance that it went. If a valid 
heuristic is employed, A always finds the 
shortest route. The algorithm's main advantage 
is that it searches fewer vertices than Dijkstra, 
which should make it faster. A will not find the 
shortest path if a good heuristic approach is not 
used, which is a drawback.  

A related answer to the issue is provided 
by Gutman, whose work is founded on the idea 
of reach. The Euclidean coordinates of each 
vertex and a reach value are both stored in 
Gutman's method. In contrast to the work by 
Goldberg and Werneck, Gutman's approach 
beats their suggested strategy given one 
landmark while it performs worse given 
sixteen landmarks. This is due to the fact that it 
can be integrated with the A algorithm. The 
disadvantages of Gutman's method include its 
reliance on domain-specific presumptions, 
increased preprocessing complexity, and 
inapplicability in dynamic environments. 

A strategy called edge labels depends on 
computing the data for an edge (e) and its 
vertices (M) in advance. All of the shortest-path 
vertices that begin with the edge e are 
represented by the superset M(e). The graph is 
first divided into a set of identically sized 
sections and a predetermined set of boundary 
vertices. 

An SSSP computation is performed on 
the regions for all the border vertices in order 
to calculate the edge flags. Additional edge-
label modifications are shown in a number of 
works, including those by Kohler et al. [62], 
Schulz et al, and Lauther. 
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The arc-flag technique is an algorithm 
proposed by Mohring et al. for sparse directed 
graphs with non-negative edge weights. By 
splitting the graph into areas and identifying 
whether an arc in a particular zone is on the 
shortest-path, the arc-flag approach 
preprocesses graph data to produce 
information that speeds shortest-path queries. 
The arc-flag approach outperforms the typical 
Dijkstra's algorithm over a large graph by a 
factor of 500, given an appropriate partitioning 
scheme and a bi-directed search. By conducting 
a single search for each location, Schilling et al. 
offer an improvement. On a subnetwork with 
one million vertices, their method results in a 
speedup of more than 1,470. 

 
Hierarchical Shortest-Path 

In the pre-processing stage, multi-
layered vertex hierarchies are created using 
hierarchical shortest-path methods. In regions 
like road networks, where it displays 
hierarchical characteristics such arranging 
significant streets, freeways, and urban streets, 
a hierarchical structure is prevalent. 

In general, techniques utilizing 
contraction hierarchies offer little spatial 
complexity. Reach-based techniques, highway 
hierarchies, and vertex routing are just a few of 
the many variations of contraction hierarchies. 

Conversely, Transit-vertex Routing and 
Hub Labels offer quick query times. 

The parts that follow talk about 
different hierarchical algorithms. 

 
Multi-Level Graphs 

The shortest paths in a multi-level 
overlay graph do not employ vertex from the 
higher levels if a set of vertices are located at a 
particular level. This strategy also depends on 
choosing the right vertices to serve as markers 
on higher levels. A multi-level graph-based 
decomposition method with space reduction as 
its goal is proposed by Schulz et al. This 
approach precomputed the shortest-paths and 
substitutes a weight equal to the length of the 
shortest-path for the weights of single edges. 
As a result, the subgraph is scaled down in 

comparison to the main graph. The distances in 
a subgraph between a group of vertices are 
equal to the distances in the original graph's 
shortest-path graph between the same group of 
vertices. 

 
Algorithms for Dynamic Shortest Paths 

The efficient live processing of updates 
and query operations is the primary need for 
dynamic shortest-path algorithms. The update 
procedure involves adding or removing edges 
from the graph. The distance between vertices 
is computed during the query operation. 

The only algorithms that can handle 
insertions and deletions are those that are fully 
dynamic. Insert operations can be handled by 
incremental algorithms, while delete 
operations cannot. Insert operations cannot be 
handled by incremental algorithms, whereas 
delete operations can. This suggests that both 
incremental and decremental algorithms have 
some degree of dynamic behavior.  

 
Time-Dependent Shortest-Path Algorithms 

Processed by a time-dependent 
shortest-path method are graphs with edges 
connected by an edge-delay function. How long 
it takes for a signal to go from one vertex to 
another is shown by the edge-delay function. 
The query operation searches the graph for the 
path with the shortest distance between the 
source and the destination vertex. The result 
that was returned is the best departure time 
that was located within the specified time 
frame. 

 
Algorithms for the Stochastic Shortest Path 

A stochastic shortest-path makes an 
effort to represent the uncertainty surrounding 
the edges as random variables. The goal then 
shifts to finding the shortest paths based on the 
lowest anticipated expenses. Adaptive and non-
adaptive algorithms are the two prominent 
study areas in this issue. Based on the graph's 
current state at a certain time instance, the 
adaptive algorithms estimate what the best 
next hop would be. The non-adaptive 
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algorithms prioritize reducing the path's 
length. 
Adaptive Algorithms 

To find the apriori least-expected-time 
pathways from all source vertices to a single 
destination vertex, Miller-Hooks and 
Mahmassani offer an approach. When the 
graph is busy, a computation is made for each 
departure time. Additionally, they suggest a 
lower-bound for these a priori least-expected-
time pathways. 

According to Nikolova et alalgorithm, 
the probability can be maximized without 
going over a predetermined limit for the length 
of the shortest pathways. Edge weights for the 
probabilistic model they define are taken from 
a predetermined probability distribution. The 
path that has the highest likelihood of 
indicating one that fails to cross a particular 
threshold is the best option. 

 
Non-Adaptive Algorithms 

The idea put out by Loui is to combine 
the length of the path with a utility function 
that is monotone and non-decreasing. The 
utility function can be divided into its edge 
lengths when it behaves linearly or 
exponentially. Thus, pathways that maximize 
the utility function can be used to identify the 
utility function using conventional shortest-
paths procedures. 

An algorithm for the best route planning 
under uncertainty is put forth by Nikolova et al. 
They determine the target as a function of the 
source's departure time and the path's length. 
Due to the penalizing behavior they display for 
early and late arrivals, they suggest that the 
path and start time can be simultaneously 

 
Conclusion 

Which method is best, have to think 
about which one is appropriate for the kind of 
graph you're working with and the shortest 
path problem you're trying to solve. In many 
applications, including communications, graph 
theory, and electronics difficulties, the shortest 
path algorithm is a significant problem. The 
shortest path Algorithm is a major issue in 

many Applications like communications, in 
graph theory and electronics problems. Various 
algorithm for resolving SPA i.e. Dijkstra’s, 
Bellman Ford, Johnson’s, has been discussed 
with there drawbacks and applications 

In this article, we suggest a classification 
system for the shortest-path issue in terms of 
science. We highlight the cutting-edge research 
for each branch of the classification and 
illustrate the distinguishing aspects. The 
classification gives shortest-path problem 
researchers a roadmap for where a necessary 
problem definition fits within the existing 
relevant work 
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