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1. Introduction 
 The complexity of the robot 
manipulator dynamic, high nonlinearities and 
strong coupling are making trajectory control 
task of these systems very difficult [1-5]. 
Moreover, most of these systems are suffering 
from system uncertainties and external 
disturbance which increase the difficulty of the 
motion control of the robot manipulator 
systems. Different control schemes had been 
proposed for this problem such as model 
predictive control, feedback linearization, and 

computed torque control. However, these 
control approaches are model based which 
means that the dynamic of robot manipulator 
must be known and this may be difficult in 
practical applications.  Proportional integral 
derivative (PID) controllers are still widely 
used in the industrial application due to 
simplicity in its structure and also in tuning its 
parameters ([2,3]. Modern control strategies 
combined with PID controller to increase its 
ability to dealing with parameter variations, 
uncertainties and external disturbance for 
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controlling nonlinear systems like robot 
manipulator. Adaptive control, neural control, 
and robust control are the most control 
schemes that used with PID to improve its 
performance and ensuring its stability and 
convergence of tracking error for controlling 
nonlinear systems([4-12]. Sliding mode control 
is one of the most important nonlinear robust 
control techniques that applied successfully in 
control of multivariable nonlinear systems in 
presence of external disturbance and system 
uncertainties. The traditional SMC control law 
consists of two terms, first one is equivalent 
control term that is based on dynamic model of 
controlled system and the second one is 
referred to as discontinuous control. There are 
two main drawbacks related with traditional 
SMC. In practical applications, it may not be 
easy to determine the exact dynamic model of 
the system due to uncertainties and complexity 
of system structure; and discontinuous term 
causes the high frequency chattering 
problem[13-21]. Chattering can be reduced by 
using saturation function instead of signum 
function or by employing a low pass filter in 
practice. The ability of ANN to approximate the 
nonlinear function is exploited and used in 
representation of system dynamics to 
approximate the sliding mode equivalent 
control[22]. Based on the method proposed by 
Roopaei and Jahromi in 2009  that eliminates 
chattering of SMC, and control scheme 
presented in[23] that avoids the need to 
determine dynamic model of robotic 
manipulator, this paper proposes a novel 
control scheme for general MIMO nonlinear 
robotic manipulator systems that is simple and 
robust. The main advantages of proposed 
method are: i) guaranteed robust behaviour of 
controlled system in presence of system 
uncertainties and external disturbance; ii) 
model free design procedure with the control 
law being based only on error, its derivative 
and sliding surface; and iii) removal of the 
chattering problem. This paper is organized as 
follows: Sec.2 discusses the robotic 
manipulator dynamic model. Sec. 3 presents 
the proposed control method. Stability of the 
proposed method by Lyapunov’s second 
method discussed in Sec.4. in Sec. 5, the 

theoretical results are used for controlling two 
links and three link SCARA robot arms and 
compares its performance with standard SMC 
subjected to parameter variations  and external 
disturbance. Conclusions are included in Sec.6. 
 

2. Robotic Manipulator Dynamic  
Dynamic model of a MIMO nonlinear robotic 
manipulator system can be expressed as 
follows:   
𝑀(𝑞) �̈� + 𝑁(𝑞, �̇� )�̇� + 𝐺(𝑞) + 𝐻(�̇�) + 𝜏𝑑 = 𝜏          
  (1) 
Where 𝑞 ∈ 𝑅𝑛 is joint angular position vector,  
τ is torque vector, 𝑀(𝑞) ∈ 𝑅𝑛 𝑥 𝑛 is inertia 
matrix as a function of 𝑞, 𝑁(𝑞, �̇� ) ∈ 𝑅𝑛 𝑋 𝑛 is 
Coriolis/centripetal vector, 𝐺(𝑞) ∈ 𝑅𝑛  is 
gravity vector, 𝐻(�̇�) ∈ 𝑅𝑛 is frictional force 
vector and 𝜏 𝑑 ∈ 𝑅𝑛 is external disturbance. In 
general, the system dynamics and external 
disturbance are unknown but they are known 
to be bounded. The following properties and 
assumptions about robot dynamics are 
required [9]. 
Property 1. Symmetry and boundedness of 
𝑀(𝑞): 
‖𝑀(𝑞)‖ ≤ 𝑘1                                                             (2) 
where 𝑘1 is a positive scalar.   
Property 2. Boundedness of coriolis/ 
centrifugal. 
‖𝑁(𝑞, �̇�)‖ ≤ 𝑘2                                                          (3) 
where 𝑘2 is a positive scalar.  
Property 3. Boundedness of  viscous friction 
‖𝐻(�̇�)‖ ≤ 𝑘3‖�̇�‖ + 𝐻0                                              (4)  
where 𝑘3 and 𝐻0 are positive scalars.  
Property 4. Boundedness of a gravity vector. 
‖𝐺(𝑞)‖ ≤ 𝑘4                                                              (5) 
where 𝑘4 is a positive scalar. 
Property 5. Boundedness of the external 
disturbance. 
‖𝜏𝑑‖ ≤ 𝐷+      (6) 
where 𝐷+   is a positive scalar 
Property 6. 
�̇�(𝑞) − 2𝑁(𝑞, �̇� ) is skew – symmetric matrix, 
then, 
 𝑋𝑇[�̇�(𝑞) − 2𝑁(𝑞, �̇� )]𝑋 = 0, 𝑋 ∈ 𝑅𝑛          (7) 

Assumption 1. The desired trajectories and 
their derivatives 𝑞𝑑𝑖(𝑡), �̇�𝑑𝑖(𝑡),  �̈�𝑑𝑖(𝑡) are 
bounded as follows: 
|𝑞𝑑𝑖(𝑡)| ≤ 𝑀𝑑1𝑖 , |�̇�𝑑𝑖(𝑡)| ≤ 𝑀𝑑2𝑖 , |�̈�𝑑𝑖(𝑡)| ≤ 𝑀𝑑3𝑖     
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with 𝑀𝑑1𝑖  , 𝑀𝑑2𝑖  , and 𝑀𝑑3𝑖 being positive 
constants.  
  
3. Proposed Control Scheme  

In order to overcome the shortcoming 
mentioned above, an adaptive FSMC method is 
proposed as follows (Structure of proposed 
control scheme is depicted in Fig. 1: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜏 = 𝑢𝑒𝑞 − 𝑢𝑟                                                               (8) 

Where 
 𝑢𝑒𝑞 = 𝑘𝑝𝐸 + 𝑘𝑑�̇�                                                      (9) 

 𝑢𝑟 = 𝑘𝑟𝑢𝑓                                                                 (10) 

𝐸𝑇 = [𝑒1 ⋯  𝑒𝑛] = [𝑞1𝑑 − 𝑞1   ⋯ 𝑞𝑛𝑑 − 𝑞𝑛]            (11) 
 𝐸  is the tracking error, 𝑘𝑟 represents the normalization factor of output variable and its positive 
definite diagonal matrix , and 𝑢𝑓 is the output of fuzzy SMC (FSMC). 𝑘𝑝 and 𝑘𝑑  are proportional and 

derivative positive definite diagonal matrix respectively. Robust control law in (8) is designed as 
follows: 

𝑢𝑓 = 𝐹𝑆𝑀𝐶 (𝑆(𝑡), �̇�(𝑡))  

=  [𝐹𝑆𝑀𝐶(𝑠1(𝑡), �̇�1(𝑡)), ⋯ , 𝐹𝑆𝑀𝐶(𝑠𝑛(𝑡), �̇�𝑛(𝑡))]𝑇   (12) 

𝑠𝑖(𝑡) = 𝑐𝑖𝑒𝑖(𝑡) + �̇�𝑖(𝑡)                                               (13) 
𝑆 = [𝑠1, 𝑠2, ⋯ , 𝑠𝑛]𝑇 = 𝐶𝐸 + �̇�                                  (14) 
𝐶 = 𝑑𝑖𝑎𝑔(𝑐1, 𝑐2 … , 𝑐𝑛)                                             (15) 

Where  𝑠𝑖(𝑡)  are the sliding surfaces and 𝑐𝑖 are positive constants. 𝐹𝑆𝑀𝐶 (𝑆(𝑡), �̇�(𝑡)) refers to the 

characteristics of fuzzy decision system that is mapping the input linguistic variables 𝑆(𝑡), �̇�(𝑡) to the 
output variable 𝑢𝑓 . The membership functions used are triangular as shown in Fig.2 and they are 

decomposed into seven fuzzy sets expressed as NB (Negative Big), NM (Negative Medium), NS 
(Negative Small), Z (Zero), PS (Positive Small), PM (Positive Medium) and PB (Positive Big). 49 fuzzy 
rules shown in Table 1 are used and intersection minimum and centre average operations are used for 
fuzzification and defuzzification, respectively. To improve the performance of closed-loop system and 
reduce the required control effort, reaching control gain 𝑘𝑟 can be tuned according to the distance of 
states to the sliding surface. The fuzzy rules of supervisory system that are used to adjust 𝑘𝑟 are 
developed with one normalized input variable 𝑠(𝑡)  and one normalized output variable 𝑘𝑓 where 

Fuzzy control. 
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Figure 1 Proposed control scheme 
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𝑘𝑟 = 𝑘. 𝑘𝑓. 𝑘 is a positive definite diagonal matrix  and  𝑘𝑓 = 𝑑𝑖𝑎𝑔(𝑘𝑓1, . . , 𝑘𝑓𝑛) is decomposed into four 

normalized fuzzy sets of  Z (Zero), S (Small), M (Medium), and B (Big). The membership functions of 
inputs and outputs linguistic variables are shown in Fig. 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1 49 fuzzy rules 
Du(t)   s(t) 

 NL NM NS NE PS PM PL 
Ds(t) NL NL NL NL NL NM NS ZE 

NM NL NL NL NM NS ZE PS 

NS NL NL NM NS ZE PS PM 
NE NL NM NS ZE PS PM PL 
PS NM NS ZE PS PM PL PL 
PM NS ZE PS PM PL PL PL 
PL ZE PS PM NL PL PL PL 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The following rules are used to tune 𝑘𝑓𝑖:  

1) If 𝑠𝑖(𝑡) is NB or PB then  𝑘𝑓𝑖 is B,  

2) If 𝑠𝑖(𝑡) is NM or PM then 𝑘𝑓𝑖  is M,  

3) If 𝑠𝑖(𝑡) is NS or PS then 𝑘𝑓𝑖 is S, 

 4) If 𝑠𝑖(𝑡) Z then  𝑘𝑓𝑖 is Z 
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Figure 3 Fuzzy sets for  the  output variable 𝑘𝑓𝑖 

 



Volume 6| May, 2022                                                                                                                                            ISSN: 2795-7640 

 

Eurasian Journal of Engineering and Technology                                                www.geniusjournals.org 

P a g e  | 83  

4. Stability Analysis  
Stability analysis of proposed control is 
executed using Lyapunov’s second method 
with the following positive definite Lyapunov 
function candidate and its derivative: 

 𝑉 =
1

2
𝑆𝑇𝑀(𝑞)𝑆                                                    

       (16) 

�̇� = 𝑆𝑇𝑀�̇� +
1

2
𝑆𝑇�̇�𝑆 = 𝑆𝑇𝑀�̇� + 𝑆𝑇𝑁𝑆                       (17)    

The dynamic model of the robotic manipulator 
is linearly parameterized and can be expressed 
in terms of a nominal reference, �̇�𝑟 [3]. 
𝑌∅ = 𝑀(𝑞)�̈�𝑟 + 𝑁(𝑞, �̇�)�̇�𝑟 + 𝐺(𝑞) + 𝐻(�̇�)           (18) 
�̇�𝑟 = �̇�𝑑 + 𝐶 (𝑞𝑑 − 𝑞)                       (19) 
where 𝑌 = 𝑌(𝑞, �̇�, �̇�𝑟 , �̈�𝑟) ∈ 𝑅𝑛 𝑋 𝑝 is the 
dynamic regression matrix that contains a 
known nonlinear function, ∅ ∈ 𝑅𝑝 is a vector 
that contains unknown constant parameters 
and 𝛼 is a positive diagonal matrix. 
�̇� = 𝑆𝑇[𝑀(𝑞)(�̈�𝑟 − �̈�) + 𝑁(𝑞, �̇�)(�̇�𝑟 − �̇�)]       (20)        
= 𝑆𝑇[𝑀(𝑞)�̈�𝑟 + 𝑁(𝑞, �̇�)�̇�𝑟 + 𝐺(𝑞) + 𝐻(�̇�) +
𝜏𝑑 − 𝜏                                                                         
(21) 
�̇� = 𝑆𝑇[𝑌∅ + 𝜏𝑑 − 𝜏]                            (22) 
According to properties (2-6) and the result 
in[12] that stand for bounded desired 
trajectory 𝑞𝑑 , 

‖𝑌∅‖ < 𝜌(𝑡), where 𝜌(𝑡) is a state-dependent 
function.  

�̇� ≤ ‖𝑆‖[𝜌(𝑡) + 𝐷+] − 𝑆𝑇𝜏                                       (23) 
�̇� ≤ ‖𝑆‖[𝜌(𝑡) + 𝐷+ + 𝑆𝑇[−𝑘𝑝𝐸 − 𝑘𝑑�̇� + 𝑘𝑟𝑢𝑓]      (24) 

�̇� ≤ ‖𝑆‖[𝜌(𝑡) + 𝐷+] + 𝑆𝑇[−𝑘𝑑(𝑘𝑑
−1 𝑘𝑝𝐸 +

�̇�) + 𝑘𝑟𝑢𝑓]                                                      (25) 

If we select 𝐶 = 𝑘𝑑
−1𝑘𝑝,  then (25) becomes 

�̇� ≤ ‖𝑆‖[𝜌(𝑡) + 𝐷+] + 𝑆𝑇[−𝑘𝑑𝑆 + 𝑘𝑟𝑢𝑓]               (26) 

Let 𝛿(𝑡) = 𝜌(𝑡) + 𝐷+. Fuzzy rules [1] in Table 1 
are selected such that 𝑠𝑖𝑢𝑓𝑖 = −|𝑠𝑖|, then   

𝑆𝑇 𝑢𝑟 = −[|𝑠1| + ⋯ + |𝑠𝑛|] = −‖𝑆‖         (27) 
With a centroid defuzzification method used 
for tuning 𝑘𝑟 , the minimum value for 𝑘𝑟  is  

 𝑘𝑟
𝑚𝑖𝑛 = 0.1 𝑘𝑚𝑖𝑛       (28) 

where   
𝑘𝑚𝑖𝑛 = min(𝑘)                          (29) 

�̇� ≤ 𝛿(𝑡)‖𝑆‖ − ‖𝑘𝑑‖‖𝑆‖2 − 𝑘𝑟
𝑚𝑖𝑛‖𝑆‖               (30) 

�̇� ≤ [‖𝛿(𝑡)‖ − 𝑘𝑟
𝑚𝑖𝑛]‖𝑆‖ − ‖𝑘𝑑‖‖𝑆‖2                           

(31) 

If we select 𝑘𝑟
𝑚𝑖𝑛 > ‖𝛿(𝑡)‖, then  �̇� ≤ 0, As a 

result, the nonlinear system under proposed 
control is globally stable and tracking error 
converges to zero 

 
5. Simulation Results 
This section demonstrates the effectiveness of 
the proposed control method via simulation 
tests. Two different robot manipulators used in 
this simulation: two links arm with payload 
and three links CSARA robot to illustrate 
generality and effectiveness of the proposed 
method. In order to demonstrate the 

effectiveness of proposed scheme, it is 
compared with conventional SMC.  Integral 
Absolute Error (𝐼𝐴𝐸) criterion is used to 
evaluate effectiveness of control schemes.  

𝐼𝐴𝐸 = ∫ |𝑒(𝑡)|𝑑𝑡
𝑡𝑓

0
                    

 (32) 

5.1 Two links robotic manipulator with payload 
 The following dynamic mode of the two links arm is used in this simulation [24]: 

[
𝜏1

𝜏21
] = [

𝐴11 𝐴12

𝐴12 𝐴12
] [

�̈�1

�̈�2
] + [

−𝑏�̇�2 −𝑏�̇�1 − 𝑏�̇�2

𝑏�̇�1 0
] [

�̇�1

�̇�2
] + [

𝑣1�̇�1

𝑣2�̇�2
] + [

𝑝1𝑠𝑔𝑛(�̇�1)
𝑝2𝑠𝑔𝑛(�̇�2)

] + [
𝐺1

𝐺2
]   (33) 

𝐴11 = 𝐼1 + 𝐼2 + 𝑚1𝑙𝑐1
2 + 𝑚2[𝑙1

2 + 𝑙𝑐2
2 + 2𝑙1𝑙𝑐2 cos(𝑞2)] + 𝑚𝑝[𝑙1

2 + 2𝑙1𝑙2 cos(𝑞2) + 𝑙2
2]  (34)  

𝐴12 = 𝐼2 + 𝑚2[𝑙1𝑙𝑐2 cos(𝑞2) + 𝑙𝑐2
2 ] + 𝑚𝑝[𝑙1𝑙2 cos(𝑞2) + 𝑙2

2]  (34) 

𝐴12 = 𝐴21    (35)  
𝐴22 = 𝐼2 + 𝑚2𝑙𝑐2

2 + 𝑚𝑝𝑙2
2    (36) 

𝑏 = 𝑚2𝑙1𝑙𝑐2 sin(𝑞2)    (37) 
𝐺2 = 𝑚2𝑙𝑐2𝑔 cos(𝑞1 + 𝑞2)    (38) 
where 𝑞1 and 𝑞2 are angular positions, 𝜏1  and 𝜏2 are torques, 𝑙1 and 𝑙2 are lengths,𝐼1and 𝐼2 are 
lengthwise centroid inertia, 𝑙𝑐1and 𝑙𝑐2 are distances from the joint, 𝑚1 and 𝑚2 are masses, 𝑣1 and 𝑣2 
are coefficients of viscous friction, and 𝑝1and 𝑝2 are coefficients of dynamic friction of Link1 and 
Link2, respectively. The parameters of the robotic manipulator are selected as 𝑚1 = 1 𝑘𝑔, 𝑚2 =
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1 𝑘𝑔, 𝑙1 = 1, 𝑙2 = 1, 𝑙𝑐1 = .5 𝑚, 𝑙𝑐2 = .5 𝑚, 𝐼1 = .2 𝑘𝑔 𝑚2, 𝐼2 = .2 𝑘𝑔 𝑚2  𝑃1 = 𝑃2 = .1, 𝑉1 = 𝑉2 = 0.1 . 
The desired joint trajectories in this simulation are selected as  𝑞𝑑(𝑡) = [𝑞𝑑1  𝑞𝑑2 ]𝑇, where 
𝑞𝑑1 = 0.3 + 0.1 sin(𝑡)   (39)   
𝑞𝑑2 = 0.4 + 0.1 cos(𝑡)   (40)  
The controller parameters selected as follows:  
 𝑘𝑑 = 𝑑𝑖𝑎𝑔(22,22), 𝑘𝑝 = 𝑑𝑖𝑎𝑔(55,55)and𝑘 =

𝑑𝑖𝑎𝑔(50,50). To demonstrate the robustness 
and effectiveness of the proposed control 
method, the dynamic model of the robot 
manipulator is subjected to external 
disturbance and also model uncertainties. 
Moreover, it’s compared with the SMC as 
shown in Figures 4 and 5. In this simulation the 
parameters of the robot manipulator which 
include mass, constant friction, and dynamic 
friction of Link1 and Link2 are changed as 
much as 15% of their nominal values with 
disturbance signal 𝑑 = 5𝑠𝑖𝑛(3𝑡). These figures 
indicate clearly that the performance of the 

proposed control method is better than SMC 
and also with smaller position tracking errors 
with respect to SMC. Moreover, these figures 
indicate clearly faster response of the proposed 
method. The input torque signals of Link1 and, 
Link2 are shown in Figures 4-c and 5-c. It can 
be seen form these figures that the same 
control effort payed form the two methods 
except a small duration of time at the 
beginning. Finally, superiority of the proposed 
control scheme with respect to SMC is 
approved by calculating 𝐼𝐴𝐸 as shown in Table 
3 that lists the 𝐼𝐴𝐸 values. This table shows 
that ability of the proposed control method to 
reduce tracking error.  

 
5.2 Three Links SCARA Robot 
The dynamic model of the three link robot manipulator used is as follows [25]: 

[

𝜏1

𝜏2

𝜏3

] = [
𝐷11 𝐷12 0
𝐷12 𝐷22 0

0 0 𝐷33

] [

�̈�1

�̈�2

�̈�3

] + [
𝐶11 𝐶12 0
𝐶21 0 0
0 0 0

] [

�̇�1

�̇�2

�̇�3

]  

 + [

𝑣1�̇�1

𝑣2�̇�2

𝑣3�̇�3

] + [

𝑝1𝑠𝑔𝑛(�̇�1)
𝑝2𝑠𝑔𝑛(�̇�2)
𝑝3𝑠𝑔𝑛(�̇�3)

] + [
𝐺1

𝐺2

𝐺3

] + [
𝐷1

𝐷2

𝐷3

]         ( 41) 

𝐷11 =
1

3
𝑙1

2𝑚1 + [𝑙1
2 + 𝑙1𝑙2 cos(𝑞2) +

1

3
𝑙2

2] 𝑚2 + (𝑙1
2 + 2𝑙1𝑙2 + 𝑙2

2)𝑚3                            (42) 

𝐷12 = − (
1

2
𝑙1𝑙2 cos(𝑞2) +

1

3
𝑙2

2) 𝑚2 − (𝑙1𝑙2 + 𝑙2
2)𝑚3        (43)  

𝐷22 =
1

3
𝑙2

2𝑚2 + 𝑙2
2𝑚3                                                  (44)  

𝐶11 = −𝑙1𝑙2 sin(𝑞2) �̇�2𝑚2 − 2𝑙1𝑙2 sin(𝑞2) �̇�2𝑚3        (45) 

𝐶12 = −
1

2
𝑙1𝑙2 sin(𝑞2) �̇�2𝑚2 − 𝑙1𝑙2 sin(𝑞2) �̇�2𝑚3       (46) 

𝐶21 = −
1

2
𝑙1𝑙2 sin(𝑞2) �̇�1𝑚2 − 𝑙1𝑙2 sin(𝑞2) �̇�1𝑚3        (47)  

where 𝑞1, 𝑞2 and 𝑞3 are angular positions, 𝜏1, 𝜏2 and 𝜏3 are torques, 𝑙1, 𝑙2 and 𝑙3 are lengths, 𝑚1, 𝑚2 
and 𝑚3 are masses, 𝑣1, 𝑣2 and 𝑣3 are coefficients of viscous friction, and 𝑝1, 𝑝2 and 𝑝3 are coefficients 
of dynamic friction of Link1, Link2 and Link3, respectively. 
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The parameters of the robotic manipulator are 
selected as 𝑚1 = 1 𝑘𝑔, 𝑚2 = 0.8 𝑘𝑔, 𝑚3 =
0.5 𝑘𝑔, 𝑃1 = 𝑃2 = 𝑃3 = 12, 𝑉1 = 𝑉2 = 𝑉3 = 0.2 
[14]. The desired joint trajectories in this 
simulation are selected as 𝑞𝑑(𝑡) =
[𝑞𝑑1  𝑞𝑑2  𝑞𝑑3]𝑇 
where 
𝑞𝑑1 = 0.3 + 0.1 sin(𝑡) + .3 sin(1.7𝑡) +
.2sin (2.9𝑡)  (48)    (67) 
𝑞𝑑2 = 0.4 + 0.1 cos(𝑡) + .3 sin(2.9𝑡) +
.2sin (3.7𝑡)  (49) 
𝑞𝑑3 = 0.1 + 0.1 sin(𝑡) + .2 sin(1.8𝑡) +
.3sin (3.7𝑡)  (50) 

The controller parameters selected for this 
manipulator as follows:  
 𝑘𝑑 = 𝑑𝑖𝑎𝑔(30,30,30), 𝑘𝑝 =

𝑑𝑖𝑎𝑔(500,500,500),  𝑘 = 𝑑𝑖𝑎𝑔(500, 500,500) 
Parameters of the robot manipulator dynamic 
are changed to 14% of their nominal values 
with external disturbance   𝑑 = 5𝑠𝑖𝑛(3𝑡).  
The simulation results that obtained when the 
proposed method and SMC used for controlling 
three links SCARA robot manipulator conform 
the result that obtained when two link robot 
manipulator used in the test. Tracking position 
and tracking error for link1, link2 and link3 are 
shown in Figures 2,3 and 4 respectively. These 
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figures show faster response of the prosed 
method and also very small position error with 
respect the SMC which can be also justified 
based on the   IAE values that listed in the Table 
3. Figures 2,3 and 4 show the control signals 
for the Link1, Link2 and Link3 respectively. 

 
6. Conclusion 
In this paper, a model and chattering free 
adaptive fuzzy SMC scheme for nonlinear 
robotic manipulator systems with uncertainty 
in system dynamics in presence of the external 
disturbance has been proposed. The proposed 
control method does not require determining 
the dynamic model of the controlled system 
with adaptive switching gain to eliminate the 
chattering problem. Proposed scheme’s 
performance is justified and compared it with 
the standard SMC by applying them for 
controlling two links and three links SCARA 
robot arm.   
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