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In this article, an approach is implemented 

to include the approximation of surfaces in the 
theory of splines not only in E3 space but also in 
E4 space. Polynomial functions are used as 
approximating functions in the work. The paper 
also developed a technique for approximating 
surfaces defined by a discrete set of line points 
using two-dimensional, three-dimensional 
splines on a rectangular and curvilinear grid, 
interpolating the values of the function and its 
derivatives not only at the nodes, but also on the 
network lines. The construction of generalized 

Hermitian splines in E4 space is based on the 
expansion of a function of three variables in the 
hyperplane in terms of its values and the values 
of its derivatives on the boundaries of the 
domain Ω̅. 

 In [*4], only the expansion of a function of 
two variables in a rectangular domain in terms 
of its values and the values of its derivatives on 
the boundaries Ω̅ was considered.. 

Ω̅  = (a0 < x < a1, b0 < y < b1, c0 < z <
c1) fig.1 
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Fig.1 grid defined on Ω 

 
Denote by Pk,s (x)   the degree polynomial 2ρ −

1 (ρ ∈ [1; ∞) with respect to x, through Ql,t (y) 
degree polynomial 2ρ − 1 (ρ ∈ [1; ∞) with 
respect to y and through Ru,v (z) polynomials of 
the same degree with respect to 
Z.(s,t,v=0,1;k,l,u =0,1,…,ρ − 1 
The coefficients of these polynomials are 

determined from the conditions 
∂qPk,s (x)

∂xq |x=as
=

δk,q δs,t ;  
∂qQe,t (y)

∂yq
|y=bt

= δe,q δs,t ;  

∂qRu,v (z)

∂zq
|z=cv

= δu,q δs,v ; (q

= 0,1, … , p
− 1)                      (2.1)            

  where δi,jis the Kronecker symbol 

 defined by the equalities: 

δi,j = {
1 for i = j 
 0 for i ≠ j 

 

This article discusses ways to construct 
generalized Hermitian splines in four-
dimensional space, i.e. splines capable of 
interpolating a function of many variables 
instead of with its derivative up to a certain 
order, not only at the nodes, along and on the 
lines of the hypernet, as well as their special 
cases. There is a need to note that the function 
of many variables is considered as a geometric 

modeling of multifactorial processes based on a 
point study. Indeed, it is expedient to use such 
splines for mathematical description in 
computer-aided design systems and 
technological preparation of production in 
industries such as construction, mechanical 
engineering, aircraft building, shipbuilding, 
automotive building, turbine building, where in 
most practical problems of applied geometry, 
derivative functions that generate recoverable 
surfaces are not set analytically. From 
generalized Hermitian splines, various types of 
other types of splines are easily obtained, 
including the bicubic splines that are most often 
encountered in the literature. As will be shown 
in subsequent works of this article, splines 
obtained as special cases of generalized 
Hermitian splines. The latter circumstance 
makes it possible to restore surfaces with great 
accuracy, the skeletons of which are partially or 
completely specified analytically. 

In this paper, the construction of 
generalized Hermitian splines is based on the 
expansion of a function of three variables in a 
rectangular box of the domain, in terms of its 
values and the values of its derivatives on the 

boundaries of the domain Ω    

  Ω   = ( a0 < x < a1 ; b0 < y < b1; c < z < c1)  
(Fig. 2) 
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Fig. 2 spline in E4 space 
Denote by Pk,s(x) degree polynomials 

2p − 1 (1≤ p <  ∞ ) with respect to X and 
through  Qs,t (y) polynomials of the same degree 

with respect to 

у, (s , t = 0; 1   k, t = 0, (p − 1))  Pq,e (z) 

polynomials of the same degree with respect to  

Z  (q, l = 0; 1  q, l = 0, (p − 1)  )  
Let us now assume that f(x;y;z ) is an 

infinitely differentiable function given to the 

hyperplane Ω, and consider the following 
expressions: 
The coefficients of these polynomials are 
determined from the conditions in E4 by 
constructing axonometric projections using the 
generalized Hermitian spline method in E4. 

∂qPk,s (x)

∂xq |
  x = as

= δk,q δs,t δq,l;  

∂qQe,t (y)

∂yq |
  y = bt

= δe,q δs,t δq,l     q =

0, (p − 1)  ;  l = 0, (p − 1)           

 
∂qRq,l (x)

∂zq |
  z = ct

= δl,q δs,t δq,l      (q=0,1,….,p-1)                                  

(2.2) 
where δi,q-

 the Kronecker symbol defined by equalities  

δi,j,k = {
1 for i = j = k 

 0 for i ≠ j = k, i = j ≠ k  etc
 

We now assume that f(x;y;z ) is an infinitely 
differentiable function given by the rectangle Ω̅ 
, and consider the following expressions: 

φp (x, y)

= ∑   

1

s=0

∑ Pk,s   (x)f k,0 (as,y)

p−1

k=0

+ ∑    

1

t=0

∑  Ql,t 

p−1

l=0

(y) ∗  f q,l (x, bt,)                

−  ∑   

1

s,t=0

∑ Pk,s (x) Ql,t(y)f k,l

p−1

k,l=0

(as,bt);                                                       

φm (y, z)

= ∑   

1

s=0

∑ Pk,s (y)f k,0 (as,y)

m−1

k=0

+ ∑    

1

n=0

∑  Rn,v 

m−1

v=0

(z) ∗ f n,v (y, lt,)

−  ∑   

1

s,t=0

∑ Pk,s (y) Qn,v(z)f n,v

m−1

n,v=0

(bs,st); 

φn (x, z)

= ∑   

1

s=0

∑ Pk,s   (x) f k,0 (as,z)

n−1

k=0

+ ∑    

1

t=0

∑  Rt 

n−1

v=0

(z) ∗ f q,v (x, bt,)         

−  ∑   

1

s,t=0

∑ Pk,s (x) Rl,t(z)f k,l

n−1

k,l=0

(as,ct);                         (2.3)  

 
Properties of polynomials in Pk,s(x) 
 Qq,t (y) Ru,v (z),…. defined by equalities (1) 

ensure the fulfillment of the following boundary 
conditions for the function 
φp (x,y), φm (y,z), φn (x,z): orthogonal 

projections in the hyperplanes P1, P2, P3, 
respectively. 
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∂m+nφp (x;y)

∂xm  ∂yn |(x;y)∈Ω̇ =  
∂m+nf(x;y;z)

∂xm  ∂yn  |(x;y)∈Ω̇ 

   ∂n+kφ (y;z)

∂yn  ∂zk
|(y;z)∈Ω̇ = 

∂n+kf(x;y;z)  

∂yn  ∂zk
 |(y;z)∈Ω̇ 

 ∂m+kφ (x;y)

∂xm  ∂zk |(x;z)∈Ω̇ = 
∂m+kf(x;y;z)

∂xm  ∂zk  |(x;z)∈Ω̇                    

(2.4) 

(m, n, k = 0,1, … . , p − 1), Ω̇ −area border Ω . 
For function φp(x,y), φp(y,z), φp(x,z) сthe 

following limit relation is true, provided that 
f(x;y;z) is an infinitely differentiable function. 

lim  
p→∞

  φp   (x, y) = f(x; y)    ((x; y) ∈  Ω )  

lim  
p→∞

φp   (y, z) = f(y; z)     ((y; z) ∈  Ω )          

lim  
p→∞

φp   (x, z) = f(x; z)      ((x; z) ∈

 Ω )                                     (2.5) 

If the function f(x;y;z) is not infinitely 
differentiable, then it can be approximated by 
the functions φp (x,y), φp (y,z), φp (x,z) at the 

final р. 
In this case, we will have an estimate for the 
modulus of the difference: 

| f(x; y; z)  −  φp (x, y)|   

≤  
          S2P     

24P [(2P!)]2
 max    
(ζ,2) ϵ Ω

 |
         ∂4Pf(ζ, 2)      

∂ζ2p  ∂22p
| 

| f(x; y; z)  −  φp (y, z)|   

≤  
          S2P     

24P [(2P!)]2
 max    
(ζ,2) ϵ Ω

 |
         ∂4Pf(ζ, δ)      

∂ζ2p  ∂δ2p
| 

|f(x; y; z)

− φp (x, z)|
          S2P     

24P [(2P!)]2
 max    

(ζ,2) ϵ Ω
|
         ∂4Pf(ζ, φ)      

∂ζ2p  ∂φ2p
|            (2.6) 

    Where S is the full lateral surface of the 

hyperplane Ω. 
We emphasize that estimate (2.6) holds only 
under the condition that the function f(x; y; z) 

domain Ω is 2p times continuously 
differentiable both in x, in y, and in z. 

Let us partition the hyperplanes Ω by the grid. 
 ∆n,m,k∶ a0 = x0 < x1 <….< xn−1 <  xn = a1 
b0 = y0 < y1 <….<  ym−1 <  ym = b1 
c0 = z0 < z1 <…. <  zk−1  <  xk = c1                       
(2.7) 
In doing so, we will denote hj = yj+1 − yj, hk =

 zk+1 − zk   

The mesh (2.7) splits the hyperplanes  Ω  into 
hyperplanes 

Ωi,j,k = [ xi ≤ x ≤  xi+1, yi ≤ y ≤  yj+1, zk ≤ z ≤

 zk+1] 
In each of the hyperplanes, we approximate the 
function f(x;y;z) by the functions 
 φp (x, y), φp (x, z), φp (y, z),  for example 

when P = 2. In this case, the index P will be 
omitted, and in its place we will put the index 
i,j,k denoting that the function 

φi,j,k (x, y, z) refers to a grid cell  Ωi,j,k, being its 

carrier. 
In this case, φi,j,k(x, y, z) takes the form for two-

dimensional projection spaces, we note 
φi,j (x, y), φj,k (y, z), φi,k (x, z) ∶  

 φi,j (x, y) = ∑ Pk,s

1

k,s=0

(x)f k,0,(xi+s, y)  

+ ∑ Ql,t

1

l,t=0

(y)f 0,l(x, yj+t) − 

− ∑ Pk,s (x)Ql,t 

1

s,k,l,t=0

(y)f k,l(xi+s, yj+t); 

φj,k (x, z)

= ∑ Pk,s 

1

k,s=0

(x)f k 0,(xk+i, y)

+ ∑  Ql,t

1

u,v=0

(y)  f 0,u(x, zk+v)

− ∑  Pk,s (x)Qu,v

1  

k,s,u,v=0

(y)  f s,v(xi+s zj+u);                         

φi,k (y, z) ∑ Pk,s

1

k,s=0

(y)f k,0(yk+i, z)

+  ∑  Qu,v

1

u,v=0

 (z)  f 0,v(y, zj+v)

− ∑  P s (y)Qu,v (z)  f k,u(yi+k zj+t).

1  

k,s,u,v=0

             (2.8)              

For P =3 you can give the following form: 

 P0,0 (x) = −
(x− xi+1  )

2

hi
3  ( 3x; - 2x  - xi+1); 

 P0,1 (x) = −
(x− xi  )

2

hi
3   ( 3xi+1; - 2x  - xi); 

P1,0,0 (x) = −
(x− xi  )

2

hi
2   (xi - xi+1); where hi =

 xi+1 + x ; 

 P1,1,0 (x) = −
(x− xi  )

2

h2   ( x- xi+1);    (*2.9)  
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 P0,0,0    (x) = −
(x− xi  )

2

hi
3   ( 3xi+1; - 2x  - xi); 

P0,0,1  (x) = −
(x− xi+1  )

2

hi
3   (3xi - 2x  - xi+1);  

P0,1,1    (x) = −
x− xi  

hi
2  (x − xi+1  )

2; 

P1,1,1  (x) = −
(x− xi  )

2

hi
2   (xi - xi+1); where hi =

 xi+1 − xi ;                             (2.11) 

P0,0,0    (y) = −
(y− yj+i  )

2

hi
3   (3yj - 2y  - yj+i); 

P0,1,0    (y) = −
(y− yj+i  )

2

hi
3   (3yj - 2y  - yj+i); 

P1,0,0    (y) = −
y− yj

hi
2   (y −  yj+i  )

2; 

P1,1,0    (y) = −
(y− yj )

2

hi
2   (y - yj+1); where hj =

 yi+1 − yj                                 (2.9) 

Q0,0,0 (y) = −
(y− yj+i  )

2

hi
3   (3yj - 2y  - yj+i); 

Q1,0,0 (y) = −
y− yj

hi
2   (y −  yj+i  )

2; 

Q0,0,1 (y) = −
(y− yj+i  )

2

hi
3   (3yj+1 - 2y  - yj+1); 

Q0,1,1 (y) = −
(y− yj+i  )

2

hi
3   (3yj+1 - 2y  - yj+1); 

Q0,1,1 (y) = −
(y− yj+i  )

2

hi
3   (3yj+1 - 2y  - yj+1); 

Q1,1,1  (y) = −
(y− yj )

2

hk
2   (y - yj+1);  where hj =

 yi+1 − yj       (2.10) 

R0,0,0 (z) = −
(z− zk+i  )

2

hk
3   ( 3zk - 2z  - zk); 

R0,0,1 (z) = −
(z− zk+i  )

2

hk
3   ( 3zk - 2z  - zk); 

R0,1,1 (z) = −
(z− zk+i  )

2

hk
3   (3yk+1 - 2z  - zk); 

R1,0,1 (z) = −
z− zk

hi
2   (z −  zk+1  )

2; 

R1,1,1 (z) = −
(z− zk )

2

hk 
  (z - zk+1); where hk =

 zk+1 − zk  (2.11) 
Similarly, one can write a three-dimensional 
spline, which is an analogue of the bicubic 
Hermitian spline. 
 It will look like: 
φ (x, y, z)

= ∑ ∑ ∑ φi,j,k

l−1

k=0

m−1

j=0

n−1

i=0

 (x, y, z)                                   (2.12) 

Spline(2.12), like the bicubic Hermitian 

spline, belongs to the function space C1,1,1 (Ω), 
but in contrast to it, the interpolation of the 

function f (x, y, z) is performed not only at the 
nodes, but also on the grid lines. [6,8,9] 

Indeed, from the 
properties  Pi,j(x),  Qj,k(y), Qi,k(z) determined 

by the conditions, we get the equalities 
 (xi, y, z) = f (xi, y, z),    i = 0, n̅̅ ̅̅̅ ,   φ (x, yj, , z) =

f (x, yj, z) ,   j = 0, m̅̅ ̅̅ ̅ , 

φ (x, y, zk) = f (x, y, zk) ,     k = 0, q̅̅ ̅̅̅ ,  , 
∂φ (x,y,z)

∂x
|x=xi

= 
∂f(x,y,z)

∂x
 |x=xi

;     

 
∂φ (x,y,z)

∂x
|y=yj

= 
∂f(x,y,z)

∂y
|y=yj

; 

∂φ (x,y,z)

∂z
| z=zk

= 
∂f(x,y,z)

∂z
 | z=zk

;                                                           

(2.13) 
In addition, at the nodes of the grid of the 
hyperplane, the equality also holds 
mixed derivatives: 
∂3φ (x,y,z)

∂x ∂y ∂z
| x=xi

y=yj
 z=zk

= 
∂3f(x,y,z)

 ∂x ∂y ∂z
 | x=xi

y=yj
 z=zk

   

Estimate (2.5) for the reconciler to the 
modulus of the difference |f(x, y, z) − φ (x, y, z)| 
takes the form: 
|𝑓 (𝑥, 𝑦, 𝑧) − 𝜑 (𝑥, 𝑦, 𝑧)| ≤

max
𝑖,𝑗,𝑘

{
𝑆4𝑃

24𝑃(2𝑃 !)2   max
(𝜁,𝜂,𝜓) 𝜖 Ω

   |
𝜕4𝑃𝑓 (𝜁,𝜂,𝜓)

𝜕𝜁
2𝑝

𝜕𝜂
2𝑝

𝜕𝜓
2𝑝 |}   (2.14)               
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